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Abstract— As one of the most popular and attractive frame-
works for model training, federated edge learning (FEEL)
presents a new paradigm, which avoids direct data transmission
by collaboratively training a global learning model across mul-
tiple distributed edge devices, thus overcoming the disadvantage
of centralized machine learning in resource limitations, delay
constraints, and privacy issues. However, due to the heavy
cost of communicating gradient among edge devices, sharing
the parameters of a large-scale neural network can still be
time-intensive. To alleviate this bottleneck, an efficient scheme,
called SignSGD has been recently proposed, where the one-bit
gradient quantization with majority vote is featured at edge
devices. Nevertheless, the performance of one-bit aggregation
will inevitably deteriorate due to the undesirable propagation
error introduced by wireless channels. To address this issue,
we propose in this work a novel reconfigurable intelligent
surface (RIS)-aided one-bit communication optimization scheme
under orthogonal frequency division multiple access (OFDMA)
to relieve the negative influence of communication error on
the SignSGD-based FEEL. Specifically, a learning convergence
analysis is firstly presented to quantitatively characterize the
impact of wireless communication error measured by the union
bound on pairwise bit error rate (BER) on the performance of
SignSGD-based FEEL. Immediately, a unified communication-
learning optimization problem is further formulated to jointly
optimize the sub-band assignment strategy, the power allocation
vector, and the RIS configuration matrix. Numerical experiments
show that the proposed design achieves substantial performance
improvement compared with the state-of-the-art approaches.
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I. INTRODUCTION

THE evolvement of next-generation of wireless networks
will enable numerous machine learning (ML) applications

and advanced tools to efficiently analyze sundry types of
data collected by edge devices for inference, autonomy, and
decision [2]. However, due to the challenges in resource limi-
tations, delay constraints, and privacy issues, it is impractical
for edge devices to upload their entire collected datasets to a
cloud server for centrally model training or inference purposes.
To address these challenges, federated edge learning (FEEL),
as one of the most attractive paradigms of edge ML, has
been developed, where geo-distributed devices are able to
collaboratively train a global model while keeping the raw data
processed locally [3]. Compared with centralized learning par-
adigms, FEEL can effectively preserve user privacy and data
security [4] by avoiding the transmission of privacy-sensitive
data over wireless channels. Moreover, the ML frontier is
pushed from the cloud center to the network edge, and thus
edge devices only need to communicate with the base station
(BS) on the up-to-date model parameters [5]. By doing so,
the communication cost can be significantly reduced in a
distributed manner, thus overcoming the drawback of excessive
propagation delay caused by the potential network congestion.
Despite the above advantages of FEEL, communication over-
head for transmitting millions of locally trained parameters
over wireless channels from each edge device to the BS
during the iterative model update process is still a significant
bottleneck. To alleviate this bottleneck, an efficient scheme
called SignSGD [6] has been recently proposed, where every
edge device sends the sign of local gradient up to the BS,
which aggregates the quantified signs and sends back only
the majority decision. Since all communication to and from
the BS is compressed to one bit, the need for communi-
cation efficiency is further accommodated. Nevertheless, as
the edge devices are usually connected to the BS over the
wireless channel, the model parameters received by the BS are
inevitably distorted by channel fading and additive noise. As
the analysis in [7], the performance of one-bit aggregation will
inevitably deteriorate due to the undesirable propagation error
introduced by wireless channels. Thence, designing uplink
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communication to achieve a more reliable transmission during
model update is still critical for FEEL training.

A. State-of-the-Art
As discussed earlier, overcoming the uplink communication

bottleneck over wireless channels is already acknowledged
as a significant challenge confronting the implementation of
FEEL. To handle this, several strategies have been proposed
by taking into account wireless channel hostilities and the
scarcity of radio resources. The first scheme that studied
FEEL by optimizing the physical layer resource constraints
focused on a broadband over-the-air computation (AirComp)
aggregation system [8], called broadband analog aggregation
(BAA), where the transmitting gradient/model of each edge
device are averaged over frequency sub-channels, thus lead-
ing to substantial latency reduction and narrower bandwidth
requirement compared with the orthogonal multiple access
schemes. The extended version of [8] was later proposed in [7],
namely one-bit over-the-air computation, which adopts in this
work a truncated-channel-inversion power control scheme to
implement a novel digital version of broadband AirComp
aggregation. A compressed analog communication scheme
(CA-DSGD) was proposed in [9] by introducing error accu-
mulation and gradient sparsification in addition to AirComp.
Although AirComp aggregation can effectively mitigate the
communication bottleneck in wireless networks, the stringent
requirements in synchronization and accurate power align-
ment are necessary, or using massive antennas [10], alter-
natively. [11] presented a hierarchical FEEL framework and
provided a rigorous end-to-end latency analysis for the com-
munication latency in heterogeneous cellular networks, which
is used to design a resource allocation strategy by minimizing
the end-to-end latency over orthogonal frequency division mul-
tiplexing (OFDM) wireless channel. Reference [12] derived
a closed-form expression of the expected convergence rate
of FL algorithm with respect to wireless factors, specifically,
wireless resource allocation and user selection. Based on this
expression, an optimization problem minimizing an FL loss
function was formulated. Interestingly, by considering the
local updates in FEEL are not equally important for learn-
ing convergence, the performance improvement was further
accomplished in [13], where a novel probabilistic scheduling
framework was proposed to yield unbiased gradient aggre-
gation, thus achieving the optimal trade-off between channel
quality and update importance. In [14], an importance-aware
joint data selection and resource allocation algorithm was
presented, where the critical data is selected according to the
gradient norm to speed up the learning process, and a learning
efficiency maximization problem was further formulated by
jointly considering the communication resource allocation and
data selection.

Recently, reconfigurable intelligent surface (RIS) has been
regarded as a vital enabler of the next-generation wireless
networks [15], [16] by installing massive low-cost passive
reflecting elements on the programmable surfaces and smartly
reconfiguring the propagation environment of wireless signals.
For instance, in inter-cell interference coordination (ICIC), cell
edge devices often suffer from poor communication quality or
unfavorable wireless propagation conditions, which dominate

the overall model aggregation error and training delay in the
FEEL system since the server must wait for its gradients to
aggregate. In this case, the deployment of the RIS is able to
proactively manipulate the wireless channels between the BS
and edge devices by judiciously inducing independent phase
shift of each reflecting element in real time [17], thereby
hugely improving the channel conditions of cell edge users,
reducing EFFL aggregation errors and training delay. [18]
considered the critical energy efficiency issue in the RIS-aided
wireless communication network where an energy consump-
tion minimization problem in an federated learning system was
formulated subject to the completion training time constraint.
A fast yet reliable model aggregation for the FEEL aided by
the RIS was proposed in [19], where an optimization problem
that jointly optimizes the device selection, the RIS phase shifts,
and the BS beamformer is further formulated, thus maximizing
the number of participating devices in each communication
round of FEEL under certain mean-squared-error (MSE)
requirements. Reference [20] established an AirComp FEEL
framework by developing a convergence analysis framework
with respect to device selection and model aggregation error,
thus formulating a unified communication-learning optimiza-
tion problem. To integrate over-the-air and non-orthogonal
multiple access into an universal FL framework, [21] proposed
to maximize the achievable hybrid rate by jointly optimizing
the transmit power, the receive scalar, and the RIS reflec-
tion coefficients. The aforementioned works demonstrated the
potential benefits of deploying a RIS to promote wireless
channel quality, thereby achieving better performance of FEEL
in fewer communication rounds.

B. Motivations and Contributions

Although the effectiveness of the RIS in improving the
model aggregation quality has been demonstrated, most of the
state-of-the-art work overwhelmingly focuses on the improve-
ment of communication level, and thus cannot fully unleash
the gains of deploying the RIS in FEEL systems. In addition,
there is currently no mature work where the RIS is deployed
to relieve the negative influence of communication error for
the SignSGD-based FEEL.

Thence, we explore in this work the benefits of the RIS
in enhancing the SignSGD-based FEEL under the orthog-
onal frequency division multiple access (OFDMA) system
by developing a unified communication-learning convergence
analysis framework, where the impact of communication error
on the FEEL training loss is ingeniously tracked. Moreover, an
optimization problem is further formulated to jointly optimize
the sub-band assignment strategy, the power allocation vector,
and the RIS configuration matrix. The key contributions of
this paper can be summarized as

• To the best of our knowledge, we are the first to integrate
the RIS technology into SignSGD-based FEEL under the
OFDMA system to relieve the negative influence of com-
munication error, which is measured by the union bound
on pairwise bit error rate (BER) during transmission.

• We innovatively derive a closed-form expression of the
convergence rate under the RIS-aided SignSGD-based
FEEL system from the perspective of communication
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Fig. 1. The RIS-assisted OFDMA-based FL system.

BER. Based on the convergence analysis, we show that
the communication error, i.e., BER, slows down the
convergence rate of the considered system. However, this
reduction can be significantly relieved by jointly design-
ing the sub-band assignment strategy, the power alloca-
tion vector, and the RIS configuration matrix. By compar-
ison with the convergence rate over the error-free channel,
a unified communication-learning optimization problem
with respect to the sub-band assignment strategy, the
power allocation vector, and the RIS configuration matrix
is further formulated.

• To tackle the non-convex communication-learning opti-
mization problem, we propose an effective algorithm
to decouple the tricky problem into several tractable
subproblems by a alternating optimization method until
the algorithm converges, where the sub-band assign-
ment strategy is solved by a penalty-based successive
convex approximation (SCA), and the power allocation
vector together with the RIS configuration matrix are
optimized by quasi-convex optimization with relaxed �0

norm approximation and the difference-of-convex (DC)
programming, respectively.

• We implement the RIS-assisted Sign-SGD based FEEL
prototype and evaluate its performance with several
benchmarks, open real-world datasets for data cat-
egorization. Simulation results confirm that a sub-
stantial performance improvement is realized using
our proposed approach compared with the existing
solutions.

The rest of this paper is organized as follows. We present the
underlying learning and communication models in Section II,
followed by the analysis of the convergence performance, and
accordingly formulate the learning optimization problem that
minimizes the training loss in Section III. An efficient solution
to jointly optimize the sub-band assignment strategy, the power
allocation vector, and the RIS configuration matrix is described
in detail in Section IV. Then illustrative numerical results

of our proposed scheme are presented in Section V. Finally,
conclusions are drawn in Section VI.

Notations: R
m×n and Cm×n separately denote the real and

complex number sets with the space of m×n. Regular letters,
bold small letters, and bold capital letters represent scalars,
vectors, and matrices, respectively. (•)T and (•)H denote the
transpose operator and the conjugate transpose operator. xi is
used to denote the i-th entry of vector x, and [X](i,j) denotes
the (i, j)-th entry of matrix X. The circularly-symmetric
complex normal distribution with mean μ and covariance δ2

is represented by CN (μ, σ2). diag{x} constructs a diagonal
matrix with the diagonal entries specified by x, and E[•] is
the expectation operator.

II. LEARNING AND COMMUNICATION MODELS

In this section, the learning and communication mod-
els are respectively presented to achieve a fast, low-cost
and reliable model aggregation over the wireless channel in
SignSGD-based FEEL under the OFDMA system, as shown
in Fig. 1, where a RIS is deployed to recompense the reduction
of signal magnitude and the dislocation of wireless communi-
cation.

A. SignSGD-FL-Based Learning Model

We consider a signSGD-FL system consisting of a
J-antenna BS coordinating the cooperative modeling across K
single-antenna edge devices, where a RIS is deployed to assist
the communication. Each device k ∈ K � {1, 2, . . . , K},
holds its local dataset Dk, which consists of labeled data
samples {(xi, yi)} ∈ Dk with xi ∈ R

d and yi ∈ R denoting
the input feature and the associated label respectively. The
parameter vector w ∈ R

q is collaboratively trained across the
edge devices, and legitimately orchestrated through the BS.

Formally, the local learning objective is to minimize an
empirical loss function Fk (w) on Dk

Fk (w) =
1

|Dk|
�

(xi,yi)∈Dk

f (w, xi, yi), (1)
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where f(w, xi, yi) denotes a sample-wise loss function quan-
tifying the prediction deviation of model w on the training
sample xi with respect to its authentic label yi, and it abbre-
viated as fi (w) for convenience. |Dk| is the size of the local
dataset in device k. We assume |Di| = |Dj | = D, for any
i �= j, which means the dataset size is uniform across edge
devices.

To perform FL, each edge device locally updates model
wk by minimizing Fk (w) using gradient descent, and the
BS aggregates the local updates to produce the global model.
Then, the training optimization problem of FL algorithm is
established with the form

min
w

F (w) = 1
K

�K
k=1 Fk (w). (2)

In this paper, we adopt the popular idea of one-bit gradient
quantization with majority vote to get available w, inspired by
signSGD [6]. Suppose the model w is computed iteratively
with N training iterations. The following procedures are
performed during the n-th iteration, 1 ≤ n ≤ N :

• Device selection: A subset of edge devices λ̄ ⊂ K with
size Kc is selected by BS to participate in the training
process.

• Local gradient estimation: Each selected device k ∈ λ̄
computes a local estimate of the gradient approximately
with respect to the loss function in Equation (1), denoted
by g(n)

k ∈ Rq , using the current parameter-vector w(n)

broadcasted from BS, and the chosen subset D̃k with
batchsize nb from local dataset Dk. Then we have

g(n)
k =

1
nb

�
i∈D̃k

∇fi(w(n)), (3)

with ∇ achieving the gradient operator. Note that nb =
|Dk| = D, means all the samples in local dataset are
selected to estimate gradient.

• Quantization: Each active device k ∈ λ̄ takes the
signs of the local gradient parameters element-wise as
g̃(n)

k = sign(g(n)
k ), where sign(x) returns the sign of each

coordinate value of the input vector x if it is non-zero
and a sign chosen uniformly at random otherwise.

• One-bit gradient aggregation: If the quantized local
gradient can be reliably recovered in the BS, i.e., the
communication is error-free, the BS sums the sign vectors
g̃(n)

k as

g̃(n) =
�

k∈λ̄
g̃(n)

k , (4)

to generate a global gradient estimate v(n) by simply tak-
ing the element-wise sign of g̃(n), i.e., v(n) = sign(g̃(n)).
Essentially, the operation computes the global gradient
by taking the median of all selected devices’ signs at
every position of the update vectors, i.e., voting on
each coordinate point of the sign vector. Then, the BS
broadcasts v(n) to all the devices to initiate the next
training iteration via

w(n+1) = w(n) − ηv(n), (5)

or, terminate the training process once the convergence
criterion is satisfied, for instance, the maximum number
of communications is reached.

Referring to the analysis of learning process, the quantized
gradient information needs to be exchanged between the BS
and devices. Intuitively, once the bit error caused by channel
distortion occurs, the subsequent one-bit aggregation will have
an adverse effect inevitably. This motivates the deployment of
the RIS to improve the channel conditions in the communica-
tion process.

B. RIS-Assisted Communication Model

As illustrated in Fig. 1, we consider a RIS-assisted FEEL
system, where a RIS is embedded in a surrounding building
acting as a passive relay. Specifically, to handle the challenge
in frequency selective fading and inter-symbol interference,
the available bandwidth B is divided into M sub-bands
by utilizing OFDM modulation technique denoted by the
set M � {1, 2, . . . , M} with M � K . Moreover, each
sub-band consists of S orthogonal sub-channels (or sub-
carriers) indexed by S � {1, 2, . . . , S}.1 The channels within
each sub-band are presumed to be definite, e.g., frequency-
flat, but supposed to vary among different sub-bands [22].
To avoid inter-device interference, each sub-band is assigned
to at most one device. Additionally, we assume that each
device transmits quantized gradient using only one sub-band
without loss of generality. For simplicity, the wireless channel
across all sub-channels is invariant during the whole learn-
ing process, which is consistent with the settings in [19]
and [20].2 The study on time-varying channels is exhibited in
Section V.

The deployed RIS consists of L passive reflecting elements,
referred as L � {1, 2, . . . , L}, and associates with a controller,
which is used for controlling signal reflection by adjusting the
reflection coefficients of the RIS elements. A separate control
link is deployed between the RIS controller and the BS to
acquire the information required for designing the reflection
coefficient. Within each sub-band m, there are two links
where the signals sent from the edge device k arrive at the
BS, respectively called, direct link hd

k,m ∈ CJ and the k-th
device-RIS-server cascade link hc

k,m ∈ CJ [23], with hc
k,m =

Gk,mΘhr
k,m. Gk,m ∈ CJ×L denotes the channel between the

RIS and the BS on the frequency of m-th sub-band where
device k transmits the quantified gradient. Θ = diag{φ} ∈
CL×L represents the diagonal matrix with the phase shift
vector φ = [φ1, φ2, . . . , φL]T with |φl| = 1. Actually, the
reflection operation on the RIS element resembles multiplying
the incident signal with φl, and then forwarding this composite
signal as if from a point source, which is the main difference
from the active reflection surface [24]. hr

k,m ∈ CL denotes
the channel between the edge device k and the RIS. For

1It is noted that when S = 1, the concept of sub-band degenerates into
sub-channel. Introducing sub-band is to obtain a better resource utilization
during the transmission of gradient symbols. As in SigSGD scheme, each
quantized gradient has only 1 bit, which does not require a large bandwidth
for transmission. Thence, the quantization gradient can be transmitted more
efficiently once each sub-band is divided into multiple sub-channels, due to
the frequency diversity.

2This assumption is reasonable since in most federated learning scenarios,
where the locations of devices, the BS together with the RIS are fixed
basically, and thus the channels are generally considered to be constant under
the case of small fading with sufficiently small fluctuation (e.g., the mmWave
communication).
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each involved channel, the channel state information (CSI)
is able to estimate perfectly at both the BS and the RIS,3

which is the same as [20] and [27]. In addition, we show by
numerical results in Section V the impact of imperfect CSI
on the learning performance as well. Note that, a common
reflection coefficients of the RIS is configured to cater all the
involved channels [22].

To facilitate the analysis in the sequel, a fixed digital
constellation is adopted across all edge devices [20]. For
simplicity, once generating quantized local gradient, devices
need to map each quantized element to one digital symbol,
i.e., Q � {−1, 1} by adopting binary phase shift keying
(BPSK) modulation without loss of generality.4 Let g̃(n)

k =
[g̃k,1, g̃k,2, . . . , g̃k,q]

T stores the channel input vector consist-
ing of quantized gradient with size q of device k within the
n-th iteration, where g̃k,q ∈ Q. All the devices transmit simul-
taneously over the sub-channels belonging to the allocated
sub-band during the gradient-uploading phase. Assume the
mk-th sub-band is assigned to the k-th device. As a result,
gradient-uploading duration will consist of Ts = q

S OFDM
symbols for transmitting quantized gradient in each learning
iteration [7]. Also, it is assumed that the power is identically
distributed over the sub-channels belonging to each sub-band.
To facilitate the problem formulation, we vectorize the power
allocation factor as p = [p1, p2, . . . , pK ]T , where pk indicates
the transmit power at each sub-channel of device k, which
will be optimized as presented in the sequel. Thence, at the
t-th OFDM symbol and s-th sub-channel within mk-th sub-
band, the BS receives the i-th quantized gradient g̃k,i, with
i = (t − 1)S + s, as

ŷk,i =
�
Gk,mk

Θhr
k,mk

+ hd
k,mk

�√
pkg̃k,i + nk,mk

, (6)

with nk,mk
∼ CN (0, σ2IJ) modeling the additive white

Gaussian noise (AWGN) vector, whose entries obey a
zero-mean variance σ2 complex Gaussian distribution. Note
that pk = 0 means the k-th device is not selected, i.e., k /∈ λ̄.
The associated power control policy pk satisfies a one-shot
transmission power constraint, i.e., S

�K
k=1 pk ≤ P0, with

P0 denoting the maximum total power.
By employing a maximum likelihood estimator (MLE),

the BS computes the estimate of g̃k,i as max
ḡk,i∈Q

P( ŷk,i

�� ḡk,i),

where ḡk,i denotes the quantized gradient after decoding.
Note that, due to the existence of wireless noise and fad-
ing, certain error inevitably occurs in this estimation, where

3To obtain relatively accurate CSI, all RIS elements are assumed to equip
with receiving radio frequency (RF) chains, and thus that conventional channel
estimation methods can be effectively applied at both RIS and BS. Before
training procedure, all devices send orthogonal pilots to the BS, which
subsequently performs channel estimation using collected signals to obtain
a relatively accurate CSI. Some early attempts in channel estimation can be
found in [25] and [26]. For instance, [25] proposed a brute-force method,
in which the CSI with respect to each RIS element is estimated sequentially
by the BS while turning off other elements, and the full CSI with low training
overhead is obtained by a channel construct approach based on compressive
sensing tools in [26].

4Even though the BPSK modulation is adopted for simplicity, we emphasize
that the extension of our system to higher-order modulation configuration
is straightforward by simply combining multiple quantized gradients to
construct a high-order modulation symbol. Simultaneously, our convergence
analysis framework also applies well once the bit error rate expression of the
corresponding high-order modulation strategy is clearly known.

the union bound on pairwise bit error rate (BER) of g̃k,i

being erroneously detected as ḡk,i, i.e., P(g̃k,i → ḡk,i) can

be written as [23] P(g̃k,i → ḡk,i) = Q(
�

Ωk

2σ2 ), with Ωk =��(Gk,mk
Θhr

k,mk
+ hd

k,mk
)(g̃k,i − ḡk,i)

��2pk, ∀g̃k,i, ḡk,i ∈ Q.
Let hΔ

k,mk
= Gk,mk

Θhr
k,mk

+ hd
k,mk

. By substituting Ωk,
we have

P
trans
k = P(g̃k,i → ḡk,i) = Q

⎛
⎝
�

2
��hΔ

k,mk

��2pk

σ2

⎞
⎠, (7)

with Q(x) denoting the tail function of the standard normal

distribution, given as Q(x) =
�∞

x
1√
2π

e−
t2

2 dt.
After estimating all quantized gradients in the OFDM

symbol t, a decoded gradient vector can be constructed as
ḡt

k = vec ({ḡk,i |(t − 1)S + 1 ≤ i ≤ tS }). Next, by cascad-
ing all Ts OFDM symbols, we can recover the full-dimension

quantized gradient as ḡk =
��

ḡ1
k

�T
,
�
ḡ2

k

�T
, . . . ,

�
ḡTs

k

�T�T

.

Once ḡk, for ∀k, is obtained, the one-bit gradient aggregation
can be executed as Equation (4), i.e., generating the sum of
sign vectors ḡ, e.g., for i-th entry of ḡ(n), it is produced by
ḡ
(n)
i =

�
k∈λ̄ ḡ

(n)
k,i , and the global gradient estimate v̄ can be

obtained by simply taking the element-wise sign of ḡ, i.e.,
v̄ = sign(ḡ).

Thanks to the enough transmit power available at the BS
and the whole downlink bandwidth can be used for broad-
casting, we suppose that the global gradient parameters v̄ can
be perfectly transmitted to the devices, as assumed in [7]
and [20]. Finally, by utilizing Equation (5), devices can update
the global model and then start the next learning iteration.
It is worth emphasizing that, the BER caused by fading and
communication noise over wireless channel may potentially
bring about estimation error in ḡk, thus inevitably affecting
v̄. As a result, the global model update in Equation (5) may
produce an inaccurate global model update, so as to delay
the convergence of FEEL. To alleviate this concern, we will
quantitatively characterize this impact in the next section.

III. CONVERGENCE RATE ANALYSIS

AND PROBLEM FORMULATION

In this section, we formally analyze the learning per-
formance of the RIS-aided SignSGD-based FEEL system.
Specifically, several standard assumptions of the stochastic
optimization involving the loss function and gradient are
introduced in Section III-A. According to these assumptions,
we derive an easy-to-understand intuition of how the charac-
teristics of wireless networks affect the learning performance
by analyzing the level of the gradient noise introduced by
the data-stochasticity and the wireless channel, as described
in Section III-B. Immediately, in Section III-C, we establish
the system design foundation as a unified gradient noise
minimization optimization task over the sub-band assignment
strategy, the transmit power vector p, and the RIS configura-
tion matrix Θ.

A. Assumptions and Preliminaries

Similar to [7], we define a non-convex loss function in
our convergence analysis, thus allowing the derived theories
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to be applicable to the popular neural networks in the same
way.

Assumption 1 (Lower bound): The associated loss function
of arbitrary parameter model w has a lower bound F ∗, i.e.,
F (w) ≥ F ∗, ∀w, with F ∗ being a constant.

Assumption 2 (Smooth): Let g represent the gradient of the
associated loss function F (w) estimated at point model vector
w = [w1, w2, . . . , wq] where q is the total number of model
w. For ∀w, w�, ∃L = [L1, L2, . . . , Lq], where Lq, ∀q is non-
negative constant, satisfy

|F (w�) − [F (w) + gT (w� − w)]|
≤ 1

2

�q

i=1
Li(w�

i − wi)2. (8)

Assumption 3 (Variance bound): Upon any w ∈ R
q , the

stochastic gradient estimate
�

gj

�
in Equation (3) provides

independent and unbiased estimates of the batch gradient
g = ∇F (w) that has coordinate bounded variance E[gj ] = g,
∀j, and E[(gj,i−gi)2] ≤ σ2

i , ∀j, i, for a vector of non-negative
constants σ = [σ1, σ1, . . . , σq], with gj,i and gi denoting the
i-th entry of gj(w) and g(w) respectively.

Assumption 4 (Unimodal, Symmetric Gradient Noise): For
arbitrary w, entries of stochastic gradient gj(w), ∀j, obey a
unimodal distribution and are symmetrical around its mean.5

Assumption 1 formally states an essential lower bound to
guarantee convergence to a stationary point [28], i.e., it ensures
that a global optimum w exists for the loss function F ;
Assumptions 2–3 are standard assumptions among stochastic
optimization literature, e.g., [28]; Assumption 4 reveals the
gradient noise caused by data-stochasticity [7], which is gener-
ated by the gradient calculation strategy of devices, i.e., using
randomly sampled batch instead of the ground-truth full-batch
samples, thus directly bringing about the discrepancy between
gj and g, as verified in [6].

Referring to the above assumptions, once learning rate η∗

is found, the following upper bound on the loss function
F (w(n+1)) with respect to the recursion in Equation (5) can
be proved.

Lemma 1: Suppose that the loss function F satisfies
Assumptions 1–4 and the parameter vector at the n-th learning
iteration is described as w(n). If we set learning rate η = η∗,
we have

E[F (n+1) − F (n)|w(n)] ≤ −η�g(n)�1 +
η2

2
�L�1

+ 2η
�q

i=1

���g(n)
i

���P[sign(ḡ(n)
i ) �= sign(g(n)

i )], (9)

with P[sign(ḡ(n)
i ) �= sign(g(n)

i )] denoting the error probability
of the sign of each entry of the stochastic gradient ḡ

(n)
i com-

pared with the true gradient g
(n)
i = ∇F

(n)
i . The expectation

and the probability are over the dynamics of the wireless
channels.

Proof: See Appendix A.

5Clearly, Gaussian noise is a special case. Note that even for a moderate
mini-batch size, we expect the central limit theorem to kick in rendering
typical gradient noise distributions close to Gaussian, whicn is the same as [7].

B. Learning Convergence Analysis

With the above assumptions, tractable convergence analysis
can be presented as follows. Note that the results establish the
convergence behavior of our system. Throughout the paper, the
learning rate is set as η = 1√

�L�1nb

with the batchsize nb being

set to 1
γ N , where γ denotes an arbitrary non-negative constant,

and N indicates the number of communication rounds.
Utilizing Lemma 1 and plugging ḡ

(n)
i into Equation (9),

we have

E[F (n+1) − F (n)|w(n)] ≤ −η�g(n)�1 +
�L�1η

2

2
+ 2η

�q

i=1

���g(n)
i

���P[sign
��

k∈λ̄
ḡ
(n)
k,i

�
�= sign(g(n)

i )].

(10)

Thence, to analyze the upper bound of E[F (n+1)−F (n)|w(n)],
we need derive a tractable expressions (upper bound) for
P[sign(

�
k∈λ̄ ḡ

(n)
k,i ) �= sign(g(n)

i )], which mainly depends on
the degree of similarity between the gradient symbol after
majority vote and the true gradient intuitively.

To begin with, we first derive the convergence rate over
error-free channel of our system, for comparison in the
sequel. To this end, a tractable expressions (upper bound) for
P[sign(

�
k∈λ̄ ḡ

(n)
k,i ) �= sign(g(n)

i )] can be established, which is
given in the following lemma.

Lemma 2: With Assumptions 1–4, we can derive a
probability upper bound over error-free channel as
P[sign(

�
k∈λ̄ ḡ

(n)
k,i ) �= sign(g(n)

i )] ≤ 1
Σi

√
Kc

, with Σi =
√

nb
|g(n)

i |
σi

denoting the gradient-signal-to-data-noise ratio. λ̄
indicates the index of participating devices with size Kc.

Proof: See Appendix B.
Next, by plugging Lemma 2 into Equation (10), we can

stablish a non-convex convergence rate over error-free channel.
Theorem 1 (Convergence rate over error-free channel):

Run one-bit gradient quantization with majority vote for N
iterations over error-free channel under Assumptions 1–4,
and set the learning rate η and mini-batch size nb for each
edge device as η = 1√

�L�1nb

and nb = 1
γ N . We have

E

�
1
N

N−1�
n=0

�g(n)�1

�

≤ aERF√
N

��
�L�1

γ

�
F (0) − F ∗ +

γ

2

�
+ 2bERF

√
γ�σ�1), (11)

where the scaling factor aERF and bERF are respectively
expressed as aERF = 1, bERF = 1√

Kc
.6

Proof: See Theorem 2 derived in [6]. The complete proof
is skipped due to space limitation.

Remark 1: Theorem 1 relates the norm of the gradient to
the expected improvement made in a single algorithmic step,
which is used to compare with the total possible improvement
under Assumption 1, thus providing an upper bound on the

6The definition of aERF and bERF is to facilitate the comparison with the
convergence rate over RIS-assisted fading channel, which reflects the effect
of data-stochasticity on the convergence rate.
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average gradient norm under non-convex loss function.7 The
effect of data-stochasticity on the non-convex convergence
rate of signSGD-FL can be represented by the bias term
2bERF

√
γ�σ�1, with σ being the standard deviation vector of

the gradient noise. This is generated by the gradient calculation
strategy of devices, i.e., using randomly sampled batch instead
of the ground-truth full-batch samples. It can be seen that as
the number of participating edge devices Kc → ∞, bERF →
0 and the bias term 2bERF

√
γ�σ�1 → 0, thus achieving a better

convergence rate.
Similar to the way to obtain the convergence rate over error-

free channel, we start our derivation by modeling a tractable
upper bound over RIS-assisted fading channel, which is jointly
determined by communication noise and data-stochasticity,
unlike the error-free channel.

Lemma 3: With Assumptions 1–4, we obtain a probability
upper bound over RIS-assisted fading channel described in
Section II-B as

P[sign(
�

k∈λ̄
ḡ
(n)
k,i ) �= sign(g(n)

i )] (12)

≤
√

Kc

Σi

�
k∈λ̄ Ξk

+

√
Kc

2
�

k∈λ̄ Ξk

�
1−
�

1√
K
√

Kc

�
k∈λ̄

Ξk

�2

,

(13)

where Ξk = 1 − 2P
trans
k can be seen as the wireless

channel perfection, and Ptrans
k indicates the BER defined in

Equation (7), which reveals the effect of the communication
noise on the correct decoding of quantization gradient during
data transmission.

Proof: See Appendix C.
Following the analogous convergence rate analysis with the

error-free channel and utilizing Lemma 3, the non-convex
convergence rate over RIS-assisted fading channel can be
established.

Theorem 2 (Convergence Rate Over RIS-Assisted Fading
Channel): Run one-bit gradient quantization with majority
vote for N iterations over RIS-assisted fading channel under
Assumptions 1–4, and set the learning rate η and mini-batch
size nb for each edge device as η = 1√

�L�1nb

and nb = 1
γ N .

We have the following improved convergence rate

E

�
1
N

N−1�
n=0

�g(n)�1

�

≤ aRIS√
N

��
�L�1

γ

�
F (0) − F ∗ +

γ

2

�
+2bRIS

√
γ�σ�1), (14)

with the scaling factor aRIS = 1

1−
√

Kc

�
1−
�

1√
K

√
Kc

�
k∈λ̄ Ξk

�2

�
k∈λ̄ Ξk

and bRIS =
√

Kc�
k∈λ̄ Ξk

, respectively.8

7The upper bound decays like O
�

1√
N

�
, until the gradient vanishes, thus

establishing convergence. It is the same as non-convex convergence rate of
SGD.

8The convergence analysis in Theorem 2 can be easily extended to the
scenario with time-varying channels among different training iterations.
By adding the iteration identification to the probability upper bound in
Lemma 3 and subsequently substituting the results into Equation (10), the
convergence rate under time-varying channels can be derived analogously.

Proof: See Appendix D.
Remark 2: The existence of BER slows down the conver-

gence rate by increasing the value of two positive scaling fac-
tors aERF and bERF defined in Theorem 1, and thus two larger
scaling items, aRIS and bRIS are generated with aRIS ≥ aERF and
bRIS ≥ bERF. In this case, the upper bound on the time-averaged
gradient norm inevitably increases compared with the error-
free scenario.9 By analyzing the forms of aRIS and bRIS, we can
clearly see that as the number of participating edge devices is
fixed, the smaller the sum of BERs of participating devices,
the faster the FL converges.

C. Problem Formulation

Theorem 2 reveals that the effect of channel hostilities
and data-stochasticity on the non-convex convergence rate of
signSGD-FL can be translated into two scaling factors aRIS ∈
(1,∞) and bRIS ∈ (0,∞), which slow down the convergence
rate potentially. Nevertheless, as shown in aRIS and bRIS,
we can conclude that aRIS is a monotonically increasing
function with respect to bRIS. Thence, by minimizing bRIS,
aRIS will decrease simultaneously, thereby reducing the upper
bound on the time-averaged gradient norm and achieving faster
convergence. This inspires us to treat bRIS as the metric of
the communication-learning co-design over RIS-aided fading
channel by optimizing the sub-band assignment strategy, the
transmit power vector p, and the RIS configuration matrix Θ.

Note that
√

Kc can be equivalently rewritten as
��p�0

where �p�0 refers to the number of nonzero elements in the
vector p, i.e., �p�0 � |{i : pi �= 0}|. Simultaneously, let an
auxiliary variable A denote the sub-band assignment matrix,
where [A](k,m) ∈ {0, 1} indicates whether the m-th sub-band
is allocated to device k, i.e., [A](k,m) = 1 if sub-band m is
assigned to device k, and [A](k,m) = 0 otherwise. Let hΔ

k,mk
=

Gk,mk
Θhr

k,mk
+ hd

k,mk
. Define

Πk = 1 − 2Q

⎛
⎜⎝
�

2
�M

m=1 [A](k,m)

��hΔ
k,mk

��2pk

σ2

⎞
⎟⎠ . (15)

We can easily verify that Πk = Ξk, ∀k, under the constraints
of
�K

k=1 [A](k,m) ≤ 1, ∀m and
�M

m=1 [A](k,m) ≤ 1, ∀k
corresponding to the sub-band assignment rules. Actually,
once k /∈ λ̄, i.e., pk = 0, we always have Πk = 0 due to
the fact that Q (0) = 1

2 . Then, for an arbitrary λ̄, we always
have

�
k∈λ̄ Πk =

�
k∈λ̄ Πk +

�
k/∈λ̄ Πk =

�K
k=1 Πk. Thence,

the communication-learning design problem, with aims to
minimize bRIS over the feasible set of {A,Θ, p}, can be
formulated as

(P) min
A,Θ,p

��p�0

K�
k=1

Πk

(16a)

9It is worth noting that [7] establishes a relationship between the transmitter
signal to noise ratio and the non-convex convergence rate under over-the-
air aggregation and the truncation-based power allocation strategy. However,
the influence of the wireless fading channel on the FEEL convergence is not
completely reflected. By contrast, Theorem 2 indicates that the wireless fading
potentially affects the communication BER thereby causing the inevitable
errors during one-bit aggregation, and decelerating the FEEL convergence.
Moreover, this performance attenuation can be greatly alleviated by the
deployment of the RIS.
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s.t.
�K

k=1
[A](k,m) ≤ 1, ∀m, (16b)�M

m=1
[A](k,m) ≤ 1, ∀k, (16c)

[A](k,m) ∈ {0, 1} , ∀m, k, (16d)���[Θ](i,i)
��� = 1, ∀i = 1, · · · , L, (16e)

S
�K

k=1
pk = P0, pk ≥ 0, ∀k = 1, · · · , K

, (16f)

with constraints (16b) and (16c) guaranteeing each sub-band
is assigned to at most one device, and each device transmits
gradient using only one sub-band. Constraints (16d) ensures
the assignment variable to be binary, and constraint (16e)
denotes the unit-modulus requirements of the RIS elements,
separately; constraint (16f) is derived from the maximum
power constraint and the following key intuition.

Proposition 1: Given the sub-band assignment strategy A
and the RIS configuration matrix Θ, the optimal power control
strategy obeys an allocation rule where the maximum power
is fully consumed by participating devices.

Proof: Given the sub-band assignment strategy A and the
RIS configuration matrix Θ, Q

�√
αpk

�
with a positive con-

stant α is a decreasing function of pk ≥ 0 as the first derivative

of Q
�√

αpk

�
satisfying

∂Q(√αpk)
pk

= −� α
8π e−αpk/2p

−1/2
k <

0. Once all power is allocated completely to the participating
devices, the denominator in the objective function of prob-
lem (P) reaches the maximum level, thus achieving optimal
solution. �

Despite the conciseness of problem (P), it turns out to
be a mixed-integer nonlinear programming problem, which
is highly intractable due to the non-convex objective function
with the �0 norm term and the coupling of A, Θ, and p,
together with the non-convex unit-modulus constraint and
binary assignment variables. To tackle this issue, an alternat-
ing optimization (AO) framework is invoked as an intuitive
approach to solve the formulated joint optimization problem
(P) in an efficient manner, as described in the following
section.

IV. ALTERNATING OPTIMIZATION FOR

COMMUNICATION-LEARNING CO-DESIGN

In this section, we propose to decouple problem (P) into
several tractable sub-problems by introducing AO method,
where the sub-band assignment matrix A, the power allocation
vector p, and the RIS configuration matrix Θ are optimized
in an alternative manner until the algorithm converges.

A. Optimizing Sub-Band Assignment Strategy Given Transmit
Power and RIS Phase Shifts

For given RIS configuration matrix Θ and the power allo-
cation vector p, the optimal sub-band assignment strategy can
be established by solving the following optimization problem

(P1) max
A

K�
k=1

Πk s.t. (16b), (16c), (16d). (17a)

We note that the non-convexity of problem (P1) is pre-
sented by a binary assignment variable which makes the

strategy design very challenging. Fortunately, by adopting the
difference-of-convex penalty-based method [29], the binary
variables [A](k,m) ∈ {0, 1} can be relaxed to continuous
variables 0 ≤ [A](k,m) ≤ 1 without loss of optimality under
the constraint of

Γ(A) =
�K

k=1

�M

m=1

�
[A](k,m) −

�
[A](k,m)

�2
�

≤ 0,

(18)

which involves a difference of convex functions. According to
the Proposition 1 within [29], with the penalty term μΓ(A),
there exists μ̄ ≥ 0 such that, for any μ ∈ [0, μ̄], the
original problem (P1) has the same optimal solutions with
the following penalty-based problem

(P1.1) max
A

�K

k=1
Πk − μΓ(A) (19a)

s.t. (16b), (16c), (19b)

0 ≤ [A](k,m) ≤ 1, ∀m, k. (19c)

Note that the penalty will be plenty large, such that, the
non-integer solutions to A are penalized.10

The challenge of solving the penalty problem (P1.1) arises

from the concavity of −
�
[A](k,m)

�2

, which can be effectively
handled by leveraging the SCA approximation to sequen-
tially convexify the concave function. In particular, for a
given feasible point [A]ν(k,m) obtained from the ν-th iteration,

a global underestimator of
�
[A](k,m)

�2

can be constructed

as
�
[A](k,m)

�2

≥ 2[A](k,m)[A]ν(k,m) −
�
[A]ν(k,m)

�2

based
on the first-order Taylor expansion, and thus the optimization
problem solved in the (ν + 1)-th iteration is given by

(P1.2) max
A

�K

k=1
Πk − μ

�K

k=1

�M

m=1
[R]ν(k,m)

(20a)

s.t. (16b), (16c), (19c). (20b)

with [R]ν(k,m) =[A](k,m) − 2[A](k,m)[A]ν(k,m) +
�
[A]ν(k,m)

�2

.
To proceed further, a tight and simple upper bound of

the Q-function, defined as Q(x) ≤ ϑ (x) = 1
6e−2x2

+
1
12e−x2

+ 1
4e−x2/2 [30], [31] can be adopted. By replacing

the Q-function in Πk with ϑ-function, problem (P1.2) can be
efficiently solved by a standard convex optimization solver
such as CVXPY [32].

B. Optimizing Transmit Power Given Sub-Band Assignment
Strategy and RIS Phase Shifts

For given RIS configuration matrix Θ and sub-band assign-
ment strategy A, problem (P) can be simplified into

(P2) min
p

√
�p�0

K�
k=1

Πk

s.t. (16f). (21a)

The objective function of problem (P2) is intractable due to
the non-convex �0 norm and tricky Q-function, which need to
be simplified into an easy-to-handle form. Similarly, the upper

10The weight of penalty µ must be chosen as the same magnitude of the
original objective, thus sufficiently approximating the original binary problem.
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Algorithm 1 Sloving Problem (P2) by Quasi-Convex Opti-
mization With Relaxed �0 Norm Approximation.

Input: Reweighting function ς(1) = 1.
1: for each i = 1, 2, · · · , imax do
2: Initialize p(1).
3: for each j = 1, 2, · · · , jmax do
4: Given bisection interval ∪ = [l, u], tolerance �.
5: while u − l ≤ � do
6: χ := l+u

2 .
7: Solve the convex feasibility problem (P2.3).
8: if Problem (P2.3) is feasible then
9: u := χ;

10: else
11: l := χ.
12: Output p(j+1).

13: Output p(i), and update ς(i+1) using Equation (23).

bound of the Q-function defined as ϑ (x) can be introduced.
However, problem (P2) is still a non-convex problem due to
the �0 norm optimization. Thence, we will creatively convert
problem (P2) into another solvable form. Let f1(p) refer to
the denominator term approximated by ϑ (x) in the objective
function of (P2). Referring to the �0 norm relax method
in [33], we can further approximate the non-convex �0 norm
by introducing a reweighting function to enforce the sparsity
in a democratic way, as

(P2.1) min
p

��
K
k=1 ς

(i)
k p2

k

f1(p) s.t. (16f), (22a)

with superscript (i) denoting the i-th iteration. The k-th
entry of the reweighting function ς in each iteration can be
established as

ςk =
�

2

��
p
(i)
k

�2

+ λ2

� �
2−1

, (23)

where 0 ≤ � ≤ 1, and the regularizer parameter λ > 0
is added to avoid yielding infinite values when some ς

(i)
k

become zeros in the iterations. Notice that the optimiza-
tion (P2.1) is executed in an iterative manner such that
the coefficients ς(i+1) are updated using the � after the
i-th iteration.

Next, we begin to analyze the problem (P2.1) that needs
to be solved in each iteration. It can be found that both
the denominator and molecular term in the relaxed objective
function are concave due to the fact that the second deriva-

tives of
∂Q(√αx)

x2 = 1
2

�
α
8π e−αx/2x−1/2

�
1
x + α

�
> 0 with

α ≥ 0 and x ≥ 0. Thence, problem (P2.1) is a tricky
non-convex optimization problem, which cannot be efficiently
solved by a standard convex optimization solver. To address
this issue, we propose to linearize the molecular term by
adopting the continuous first-order Taylor expansion, thus
converting the objective function into a form of quasi-convex
function. Specifically, in the j-th approximation iteration, each

subproblem of (P2.1) can be rewritten as

(P2.2) min
pj

��K
k=1 ς

(i)
k p̃2

k + 1
2

1��K
k=1 ς

(i)
k p̃2

k

υT
�
pj − p̃

�
f1(pj)

(24a)

s.t. (16f), (24b)

with p̃ denoting the value of p in the (j − 1)-th iteration. υ
is a column vector with size K × 1, each element of which
can be expressed as υk = 2ς

(i)
k p̃k.

Now, it is easy to verify that problem (P2.2) is a
quasi-convex optimization problem, which can be solved
efficiently via bisection method. Specifically, let f2(pj) =��K

k=1 ς
(i)
k p̃2

k + 1
2

1��
K
k=1 ς

(i)
k p̃2

k

υT
�
pj − p̃

�
, then problem

(P2.2) can be turned into a feasibility check problem, as

(P2.3)find pj s.t. f2(pj) − χf1(pj) ≤ 0, (16f), (25a)

which can be efficiently solved by a standard convex optimiza-
tion solver. Let p∗

j be the optimal value of problem (P2.3).

We can check whether the optimal
f2(p

∗
j )

f1(p∗
j ) is less than or more

than a given value χ by solving the convex problem (P2.3).
If (P2.3) is feasible, we have

f2(p∗
j )

f1(p∗
j ) ≤ χ, thus decreasing χ

accordingly. Conversely, we have
f2(p∗

j )

f1(p∗
j ) ≥ χ, and increase χ.

The quasi-convex optimization with relaxed �0 norm
approximation for solving problem (P2) is summarized as
Algorithm 1. Once the objective value realizes convergence,
an exactly feasible solution p∗ can be obtained.

C. Optimizing RIS Phase Shifts Given Sub-Band Assignment
Strategy and Transmit Power

For given power allocation vector p and sub-band assign-
ment strategy A, problem (P) can be rewritten as

(P3) min
Θ

K�
k=1

Q

⎛
⎜⎜⎝
!""#2pk

���Gk,m∗
k
Θhr

k,m∗
k

+ hd
k,m∗

k

���2

σ2

⎞
⎟⎟⎠
(26a)

s.t. (16e), (26b)

with m∗
k �

$
m
���[A](k,m) = 1, k ∈ K

%
denoting the device

mapping for each sub-band.
However, the objective function in problem (P3) is

non-convex with respect to Θ, and the unit-modulus con-
straint (16e) is also intrinsically non-convex. Thence, we will
convert (P3) into another solvable form inspired by [34].
Let Dk = diag{hr

k},11 then GkΘhr
k = GkDkφ = Akφ

with φ = [φ1, φ2, . . . , φL]T . Define Z =
��GkΘhr

k + hd
k

��2.
By replacing GkΘhr

k = Akφ, we have

Z = φHAH
k Akφ + φHAH

k hd
k +
�
hd

k

�H
Akφ +

��hd
k

��2.
(27)

11Given sub-band assignment strategy A, m∗
k is distinctly known, and thus

hr
k,m∗

k
can be rewritten as hr

k for ease of notation, whenever no confusion is

incurred, and hd
k and Gk are also derived from this predigestion.
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Let φ̂ =
�
φH , 1

�
. Now we can rewrite Z as Z = φ̂

H
Ιkφ̂ +��hd

k

��2 = tr (ΙkX) +
��hd

k

��2, with Ιk =

�
AH

k Ak AH
k hd

k�
hd

k

�H
Ak 0

�
,

and X ∈ C(L+1)×(L+1), is defined as

X = φ̂φ̂
H

=
�

φ
1

� �
φH 1

�
=
�

φφH φ

φH 1

�
. (28)

Thus, problem (P3) can be re-formulated as

(P3.1) min
φ

K�
k=1

Q

⎛
⎝
�

2pk(tr (ΙkX) +
��hd

k

��2
)

σ2

⎞
⎠ (29a)

s.t. (16e). (29b)

Similar to Section IV-B, an upper bound of the Q-function can
be introduced to replace the objective function in (P3.1) with

f2,k(X) = ϑ

�&
2pk(tr(ΛkX)+�hd

k�2
)

σ2

'
. However, the problem

is still non-convex due to the modulus constraint (16e).
From φφH in Equation (28), we can realize that the

diagonal entries in X embody the modulus of the elements
in φ. This motivates us to define a simple matrix E with
(i, j)-th entry being given by [E](i,j) = 1, ∀i = j, and
[E](i,j) = 0, ∀i �= j. As a result, problem (P3.1) is converted
into

(P3.2) min
X

�K

k=1
f2,k(X) (30a)

s.t. X ≥ 0, tr (EX) = 1, (30b)

rank (X) = 1, (30c)

where the constraint in (30c) is responsible for strictly guar-
anteeing that 1) the resolved X can be decomposed into

X = φ̂φ̂
H

, and 2) the solution of the phase shift in φ in
the resolved X is equivalent to the solution of the phase shift
in Θ in (P3).

To further address the nonconvexity due to the con-
straint (30c) in problem (P3.2), the semidefinite relaxation
(SDR) technique by simply dropping rank (X) = 1 is applica-
ble to obtain a feasible solution X∗. By this means, if X∗

is rank-one, the optimal solution to the original problem
φ∗ can be recovered by rank-one decomposition, and thus
Θ∗ = diag{φ∗} can be determined; otherwise, if X∗ fails to
be rank-one, additional step, e.g., Gaussian randomization [35]
needs to be applied, thus extracting a suboptimal solution
for the original problem. However, for the high-dimensional
optimization problems, e.g., L is large enough, the probability
of returning a rank-one solution X∗ becomes low, which
yields significant performance deterioration [36], [37], [38].
Thence, we present a DC programming approach [19], [37] to
induce a rank-one solutions X∗ for (P3.2), thus addressing the
limitations of the SDR technique.

To begin with, a key intuition on the rank-one constraint
needs to be revealed.

Lemma 4: For arbitrary positive semidefinite matrix X ∈
C

L×L with tr(X) ≥ 1, we have rank (X) = 1 ⇔ tr (X) −
�X�2 = 0 where trace norm tr (X) =

�L
i=1 σi (X) and

spectral norm �X�2 = σ1 (X) with σi (X) denoting the i-th
largest singular value of matrix X.

Proof: See Proposition 3 in [39]. The complete proof is
skipped due to space limitation. �

By utilizing Lemma 4, we treat the DC function as a penalty
component, which can be added to the objective function,
instead of simply dropping the non-convex rank-one constraint
via the SDR technique, thus enhancing a low-rank solution for
problem (P3.2), yielding

(P3.3) min
X

�K

k=1
f2,k(X) + ρ (tr (X) − �X�2) (31a)

s.t. (30b), (31b)

with ρ denoting the penalty parameter. As the non-negative
component tr (X) − �X�2 → 0 , an exact rank-one solution
X∗ can be obtained.

However, problem (P3.3) is still non-convex, due to the
concave term −ρ�X�2. Fortunately, this term can be linearized
by leveraging majorization-minimization techniques, yielding
a DC algorithm [40], where problem (P3.3) can be transformed
into a series of subproblems. At iteration υ, the subproblem
can be established as

(P3.4) min
X

K�
k=1

f2,k(X) + ρ
(
X, I − ∂

��Xυ−1
��

2

)
(32a)

s.t. (30b), (32b)

with Xυ−1 denoting the optimal solution of the subproblem
at iteration υ − 1, and �X, Y� = R{tr

�
XHY

�} outputing the
inner product of matrices X and Y. The subgradient ∂

��Xυ−1
��

2
can be calculated efficiently as vvH , with v representing the
leading eigenvector of matrix Xυ−1 [39]. Obviously, problem
(P3.4) is convex and can be solved efficiently by existing
solvers. According to [40], the convergent critical points can
be easily guaranteed by the DC algorithm from any feasible
initial points, and thus a feasible solution X∗ can be obtained.
Then, the related φ∗ is computed by adopting the Cholesky
decomposition, thus recovering the RIS configuration matrix
by Θ∗ = diag{φ∗}.

D. Implementation and Complexity

Based on the above analysis, the overall AO algorithm
for maximizing the learning performance in Theorem 2 by
alternately optimizing the sub-band assignment strategy A, the
power allocation vector p and the RIS configuration matrix Θ
is summarized as Algorithm 2.12

The computational cost of the proposed AO algorithm is
mainly derived from the step for solving problem (P1.2) by
fixing RIS phase shifts Θ and power allocation vector p,
solving problem (P2.3) by fixing RIS phase shifts Θ and
sub-band assignment strategy A, plus the step for solving a
sequence of the problems (P3.4) with fixed transmit power p
and sub-band assignment strategy A.

To solve (P1.2), according to [41], the worst-case compu-
tational complexity is O

�
(KM)3.5

�
by adopting the interior

12Once the optimization strategy is executed entirely and converges to a
critical point, a dedicated control channel will be adopted at the BS to feed
back the optimal power allocation scheme and sub-band assignment strategy
to the device in the form of control signaling. Thanks to the enough transmit
power available at the BS, we suppose that the control signaling can be sent
to the devices without error.
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Algorithm 2 Alternating Optimization Algorithm for Solving
Problem (P).

Input: Initial the RIS configuration matrix Θ1 and p1, halting
criterion � > 0.

1: for each t = 1, 2, · · · , amax do
2: Given Θt and pt, solve problem (P1.2) to obtain the

solution At+1.
3: Given At+1 and Θt, solve problem (P2) to obtain the

solution pt+1 using Algorithm 1.
4: Given At+1 and pt+1, solve problem (P3.4) to obtain

the solution Xt+1 by DC algorithm.
5: Update φt+1 by Cholesky decomposition, and obtain

Θt+1 using Θt+1 = diag
�
φt+1

�
.

6: if The decrease of the objective function of problem (P)
is below � then

7: break

point method. Assume the convergence requires dmax rounds
for the SCA approximation, which is a finite number and
not very large in practice. Thence, the total computational
cost of optimizing the sub-band assignment strategy in each
iteration is given by O

�
dmax(KM)3.5

�
. To solve (P2.3),

the worst-case computational complexity by using the inte-
rior point method is O �K3.5

�
[36]. In bisection method,

the length of the interval after τ iterations is 2−τ (u − l),
where u − l denotes the length of the initial interval defined
in Algorithm 1. It follows �log2 ((u − l)/ε)� iterations are
required before the bisection method terminates. As a result,
the computational cost of optimizing the power allocation
vector in each alternating iteration can be expressed as
Pc = O �imaxjmax�log2 ((u − l)/ε)�K3.5

�
. Simultaneously,

when each (P3.4) is solved by the second-order interior
point method [35], the worst-case complexity is bounded

by O
��

L2
�3.5
�

. Supposing those problems converging to
critical points with emax ≥ 1 iterations, during each alter-
nate iteration, the computational cost of optimizing the RIS

phase shifts in the worst case is O
�
emax
�
L2
�3.5
�

. As a

result, the complexity of Algorithm 2 is upper bounded by

O
�
amax

�
Pc + emax

�
L2
�3.5 + dmax(KM)3.5

��
.

V. NUMERICAL RESULTS AND ANALYSIS

In this section, numerical results are provided to examine
the effectiveness of the proposed optimization algorithms.

A. Simulation Setup

In our simulations, a three-dimensional Cartesian coor-
dinate system as illustrated in Fig. 2(a) is conducted,
where the BS and the RIS equipped with a uniform linear
array are placed at (50, 0, 10) and (0, 0, 10), respectively.
The edge devices are randomly and uniformly distrib-
uted in two circle regions with the radius of 10m, i.e.,
Region I ∝ {(x, y, 0) : −20 ≤ x ≤ 0,−10 ≤ y ≤ 10} and
Region II ∝ {(x, y, 0) : 100 ≤ x ≤ 120,−10 ≤ y ≤ 10}. For
simplicity, we assume that half of the K devices are randomly
distributed in Region I, and the other half are randomly
distributed in Region II.

The distances for the k-th direct device-BS link, the RIS-BS
link, and the device-RIS link are denoted by dk

UB dk
IB and dk

UI ,
respectively. Within each sub-band, the distance-dependent
path loss for all channels is given by L (d) = ζ0(d/d0)

−α,
with ζ0 representing the path loss with respect to reference
distance d0 = 1 meter. The link distance is denoted by d,
and α indicates the path loss exponent. All channels suffer
from Rician fading [16] where the channel coefficient is

expressed as ι =
�

ς
1+ς ιLos +

�
1

1+ς ιNLos, with ς denoting
the Rician factor. ιLos and ιNLos respectively represent the
line-of-sight component and the non-line-of-sight component.
Then, the corresponding channel coefficients involved can

be given by Gk =
�

L
�
dk

IB

�
ιk
IB , hr

k =
�

L
�
dk

UI

�
ιk
UI ,

hd
k =

�
L
�
dk

UB

�
ιk
UB , respectively. Following [42], we set

the Rician factor of ιkIB , ιkUI and ιkUB to be 3 dB, 0 dB,
and 0 dB. The path loss exponents for the direct device-BS
channel, the RIS-BS channel, and the device-RIS channel are
set to 4.8, 2.2, and 2.2, respectively. Unless stated otherwise,
we set P0 = 30dBm, σ2 = −50dBm, ζ0 = −30dB, J = 5,
K = 11, S = 1, L = 40, and � = 1e − 5.

We consider the image classification task on the
well-known FEMNIST dataset, which consists of 10 classes of
apparel [43]. Specifically, we construct a 6-layer convolutional
neural network (CNN), which consists of two 5×5 convolution
layers, a 2×2 max pooling layer, followed by a batch normal-
ization layer, a fully connected layer with 50 units, a ReLu
activation layer, and a softmax output layer (q = 21921). The
cross-entropy loss is defined, and the local training data of
each edge device are drawn independently and identically from
the training set of FEMNIST.

We compare the performance of our proposed algorithm
with the following baseline schemes, thus verifying the effec-
tiveness of our proposed system:

• Joint optimization for RIS-enhanced OFDMA with
RIS (OFDMA w/ RIS) [22]: A RIS is employed to aid
a multiuser OFDMA communication system, where the
RIS configuration matrix, the OFDMA sub-band assign-
ment, and the power allocation are jointly optimized for
maximizing the common rate among all devices.

• DC-based optimization without RIS (AIR w/o RIS
by DC) [39]: The RIS is not considered under Aircomp
system, i.e., φ = 0. The device selection and the
receiver beamforming are jointly optimized by the DC
programming to maximize the number of active devices
under certain mean-squared error (MSE) requirements ϕ.

• DC-based alternating optimization with RIS (AIR
w/ RIS by DC) [19]: A RIS is deployed to assist
AirComp-based FL system. The device selection, the
receiver beamforming, and the configuration matrix at the
RIS are jointly optimized using DC programming such
that the number of active devices is maximized while the
communication MSE is guaranteed.

• SCA-based optimization with RIS (AIR w/ RIS by
SCA) [20]: A RIS is employed to assist the over-the-
air model aggregation, where the active devices, the
receiver beamforming, and the RIS configuration matrix
are jointly optimized based on SCA approximation and
Gibbs sampling.
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Fig. 2. Simulation setup and the average number of selected devices versus P0.

Fig. 3. Performance of the proposed algorithm.

Additionally, the case where the channels are noiseless and
all devices are selected at each learning iteration (Error-Free),
serves for the comparison.

B. Performance on Device Selection

As illustrated in Fig. 2(b), we exhibit how the average
number of selected devices varies with the maximum total
power P0. We consider the following two settings on the
locations of the devices: 1) Setting I: the K devices are
randomly and uniformly allocated in Region I; 2) Setting II:
half of the K devices are randomly and uniformly distributed
in Region I, and the other half are randomly distributed in
Region II. It is observed that when P0 is of lower magnitude,
our proposed scheme tends to discard the partial devices with
weak channels. A potential reason is that the available power
resources are insufficient to support reliable transmission for
all the devices. Thence, the limited power resources will be
allocated to the devices with better channel conditions as much
as possible to reduce the influence of the aggregation error
caused by wireless channels. With the increase of P0, the
average number of selected devices of our method on Setting I

becomes larger. This demonstrates that, with sufficient power
resources, more edge devices will be encouraged to participate
in the training process to eliminate the noise induced by data-
stochasticity. Note that, under Setting II, when the increase of
P0 is not sufficient, the average number of selected devices
may stay invariant. This is because devices under Setting II
suffer from more wireless fading, and thus supporting the
reliable transmission of additional devices requires a more
pronounced power boost.

C. Performance on Training Convergence

In this section, we examine the convergence of our pro-
posed algorithm in the image classification task described
in Section V-A. Fig. 3(a) and Fig. 3(b) illustrate the results
on cross entropy and testing accuracy of the proposed algo-
rithm and above benchmarks versus the number of train-
ing iterations respectively. We can see that, the proposed
method achieves a more excellent convergence performance
than other benchmarks. Comparing the proposed method with
AirComp-based system, e.g., (AIR w/ RIS by SCA) and
(AIR w/ RIS by DC), the performance gap may be mainly
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Fig. 4. Testing accuracy of the proposed algorithm under different number of RIS elements and imperfect CSI.

determined by the fact that the overall model aggregation
error in Aircomp system is dominated by the devices with
weak channels since the devices with better channel qualities
have to lower their transmit power to align the local models
at the BS. However, alignment operation in Aircomp will
reduce the transmission power, thus resulting in less energy
consumption. Besides, from the aspect of the spectral effi-
ciency, the Aircomp-based algorithm can provide Kc times
the spectral efficiency of our system due to the fact that the
edge devices share the same sub-band. It is worth mentioning
that there exists a tiny but unignorable gap compared to
the error-free case due to the fact that the convergence rate
depends on the level of wireless hostility and device selection
loss, thus resulting in a deviated gradient for model updating.
These observations are aligned with our analysis presented in
Theorem 2.

D. Performance Versus The Number of RIS Elements

The effect of the number of reflecting elements at the RIS
on the testing accuracy is illustrated in Fig. 4(a). Clearly,
both methods can realize sizable performance promotion with
a large L. This is because more precise passive reflective
beamforming for the incident signals can be produced as the
number of reflecting elements increases, thus suppressing the
aggregation error effectively at the BS. However, the loss
gap between the proposed method and other benchmarks still
exists.

E. Performance on Imperfect Wireless Channels

As illustrated in Fig. 4(b), we consider the impact of imper-
fect CSI on the performance of the proposed method and (AIR
w/ RIS by SCA). Both the direct channel and the cascade link
from the device to BS via the RIS Ck,m = Gk,mdiag{hr

k,m}
are assumed to be imperfect [44]. Specifically, the direct

channel is given by ĥ
d

k,m = hd
k,m + Δhd

k,m, where hd
k,m

is the estimated channel known at the BS and Δhd
k,m is

the unknown channel error. Similarly, the cascade link can
be represented as Ĉk,m = Ck,m + ΔCk,m, with Ck,m

and ΔCk,m denoting the corresponding estimated channel
and the estimation error, respectively. The CSI error vector

Δhd
k,m and vec(ΔCk,m) follow the circularly symmetric com-

plex Gaussian distribution, i.e., Δhd
k,m ∼ CN (0, ς2

k,mI) and

vec(ΔCk,m) ∼ CN (0, ε2
k,mI), with ς2

k,m = σ2
h

��hd
k,m

��2
2

and

ε2
k,m = σ2

c �Ck,m�2
2. σ2

h ∈ [0, 1) and σ2
c ∈ [0, 1) measure the

amount of CSI uncertainties, which are set to 0.1. As it can be
seen, the proposed method achieves stronger robustness than
(AIR w/ RIS by SCA), although both approaches are robust
against the imperfect CSI.

F. Performance on Discrete RIS Phase Shifts

As disclosed in [20] and [42], the continuous phase shift
model |φl| = 1 of RIS potentially incurs high implementation
cost. Thence, we further suppose that only a finite number
of discrete values can be taken for each phase shift element

following [20] and [42], where φl ∈ F =
�
exp
�

j2πm
2b

��2b−1

m=0
with b phase resolution in number of bits [45]. F is the
discrete feasible set of the reflection coefficient. When b = ∞,
F becomes a continuous set, i.e., Fd = {φ : |φl| = 1, ∀l}.
As described in [20], the case with discrete RIS phase shifts
can be accommodated by projecting the solution under the
proposed algorithm to Fd. The cross entropy of the proposed
method under various choices of b ∈ {1, 2, 3} is presented in
Fig. 5(a). Under the case with b = 1, there exists 0.06 loss
ascension gap compared with the continuous case, although
this gap gradually becomes smaller when b ∈ {2, 3}. This is
because low-bit phase shifts introduce an additional mismatch,
thus reducing the training performance.

G. Performance on Time-Varying Channels

We further simulate the proposed method under the case
where the small-scale fading channel coefficients of all the
channels vary independently every 50 training iterations. In
this circumstance, the optimal solution of the sub-band assign-
ment matrix A, the power allocation vector p, and the RIS
configuration matrix Θ need to be updated when the channels
change.13 As illustrated in Fig. 5(b), we plot the cross entropy

13The device will send pilot symbols sequence to the BS at regular
intervals, and the BS will estimate the channel according to the pilot symbols
information [25], so as to check whether the channel of devices has changed.
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Fig. 5. Cross entropy of the proposed algorithm under discrete phase shift and time-varying Rician fading channels.

of the proposed method and (AIR w/ RIS by SCA) with time-
varying channels. Obviously, both algorithms still achieve a
more excellent convergence performance when the channels
change, demonstrating the robustness of both algorithms under
time-varying fading channels.

VI. CONCLUSION

In this paper, we proposed a RIS-aided SignSGD-based
learning system to achieve an effective FEEL across wireless
devices. We derived a closed-form expression of the con-
vergence rate by characterizing the performance loss due to
the communication noise, which is measured by the union
bound on BER caused by the wireless channel. Based on
the convergence analysis, a unified communication-learning
optimization problem with respect to the sub-band assignment
strategy, the power allocation vector, and the RIS configuration
matrix was further formulated. To tackle the non-convex
communication-learning optimization problem, we proposed
an effective algorithm to decouple the tricky problem into
several tractable subproblems by an alternating optimization
method, where the sub-band assignment strategy is established
by a penalty-based SCA method, and the power allocation vec-
tor together with the RIS configuration matrix are optimized
by quasi-convex optimization with relaxed �0 approximation
and the DC programming, respectively. Finally, some extensive
numerical results demonstrate the convergence improvements
of our proposed algorithm compared with the existing meth-
ods. This work represents a communication-learning tradeoff
in the SignSGD-based FEEL over wireless channel, which is
an initial attempt to theoretically prove that RIS can help the
convergence of one-bit aggregation performance. For future
work, more generalized settings such as heterogeneous data
distribution will be taken into account, where the more com-
plex convergence theory needs to be established, due to the
uneven data-stochasticity of each edge device.

APPENDIX A
PROOF OF LEMMA 1

To begin with, in every single step, the improvement of
the objective based on Assumption 2 for one instantiation of
the noise induced by data-stochasticity and communication

error can be bounded. g
(n)
i = ∇F

(n)
i and ḡ

(n)
i respectively

denote the i-th component of the true gradient g(n) and ḡ(n).
By substituting Equation (5) to Equation (8) and decomposing
the improvement to reveal the error induced by stochasticity
and communication, we can get

F (n+1) − F (n)

≤ (g(n))T (w(n+1) − w(n))

+
1
2

�q

i=1
Li

�
w

(n+1)
i − w

(n)
i

�2

= −η(g(n))T sign(ḡ(n)) + η2
�q

i=1

Li

2

= −η�g(n)�1 +
η2

2
�L�1 +

2η
�q

i=1
|g(n)

i |I[sign(ḡ(n)
i ) �= sign(g(n)

i )]. (33)

To find the expected improvement at iteration n + 1 condi-
tioned on the previous iterate, we have

E[F (n+1) − F (n)|w(n)] ≤ −η�g(n)�1 +
η2

2
�L�1

+ 2η

q�
i=1

|g(n)
i |P[sign(ḡ(n)

i ) �= sign(g(n)
i )] (34)

with g(n) keeping constant under the conditioning, which
completes the proof. �

APPENDIX B
PROOF OF LEMMA 2

The main idea is to formulate an equivalent mathe-
matical event, which can be described as a well-defined
random variable with known distributions [6], [7], for
P[sign(

�
k∈λ̄ ḡ

(n)
k,i ) �= sign(g(n)

i )]. To this end, we define a
random event for each device, as

Xk =

*
1, with probability pi,

0, with probability qi.
, (35)

with pi = P[sign(ḡ(n)
k,i ) �= sign(g(n)

i )] and qi = P[sign(ḡ(n)
k,i ) =

sign(g(n)
i )] respectively denoting the success probability and

failure probability of Bernoulli trial Xk, and keeping constant
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among devices under the independent and identical setting.
Let Z =

�
k∈λ̄ Xk, which represents the number of edge

devices whose sign bit at the i-th entry is not equal to the
sign of true gradient. Thence, Z is the sum of Kc independent
Bernoulli trials, i.e., binomial with success probability pi.
Next, by computing the mean and variance of Z , we have
E[Z] = Kcpi = Kc

�
1
2 − �i

�
, and V[Z] = Kcpiqi =

Kc

�
1
4 − �2i

�
, with �i = 1

2 − pi = qi − 1
2 denoting the distance

from pi to 1
2 .

To determine P[sign(
�

k∈λ̄ ḡ
(n)
k,i ) �= sign(g(n)

i )], we must
derive the probability that at least half of the Kc devices make
a wrong approximation to the true gradient, i.e., P[Z ≥ Kc

2 ].
We have

P[Z ≥ Kc

2
] = P[Z − E [Z] ≥ Kc

2
− E [Z]]

(a)

≤ V [Z]

V [Z] +
�

Kc

2 − E [Z]
�2

=
1

1 + (Kc
2 −E[Z])2

V[Z]

(b)

≤ 1
2

�
V [Z]

Kc

2 − E [Z]

(c)
= 1

2

�
1
4 − ε2

i

Kcε2
i

=
1
2

�
1

Kc

�
1

4ε2
i

− 1
�

, (36)

where (a) is from the Cantellis’ inequality, i.e., P[X−E[X ] ≥
λ] ≤ V[Z]

V[Z]+λ2 , λ > 0; (b) is from the fact that 1 + a2 ≥ 2a;
and (c) is derived by variable substitution using E[Z] and V[Z]
calculated above. Now, it can be expected that next we need
to derive an upper bound for 1

4ε2
i
− 1.

Lemma 5: Suppose that the unimodal symmetric gradient
noise is defined in Assumption 4, then we can derive 1

4ε2
i
−1 ≤

4
Σ2

i
, with Σi =

√
nb

|g(n)
i |
σi

denoting the gradient-signal-to-data-
noise ratio.

Proof: Thanks to the unimodal symmetric gradient noise
assumption stated in Assumption 4, the upper bound of prob-
ability pi for the sign bit of a single device can be established.
Specifically, recall the known Gauss’ inequality [46] for a
unimodal symmetric random variable X , with mean μ and
expected squared deviation from the mean σ2, then we have

P[|X − μ| > x] ≤

⎧⎪⎨
⎪⎩

4
9

σ2

x2
, if x

σ > 2√
3
,

1 − x√
3σ

, otherwise.
(37)

Let gi hold negative without loss of generality. By adopting
Gauss’s inequality, we get

pi = P

�
sign(ḡ(n)

k,i ) �= sign(g(n)
i )
�
=P

�
ḡ
(n)
k,i − g

(n)
i ≥ |g(n)

i |
�

=
1
2

P

�
|ḡ(n)

k,i − g
(n)
i | ≥ |g(n)

i |
�
,

≤

⎧⎪⎨
⎪⎩

2
9

1
Σ2

i

, if Σi > 2√
3
,

1
2
− Σi

2
√

3
, otherwise.

∀i, (38)

with the term
√

nb being due to the fact that ḡ
(n)
k,i is computed

over a mini-batch of size nb.

Well plugging the equation �i = 1
2 − pi into Equation (38),

we have

�i ≥

⎧⎪⎨
⎪⎩

1
2
− 2

9
1

Σ2
i

, if Σi > 2√
3
,

Σi

2
√

3
, otherwise.

∀i. (39)

For Σi ≤ 2√
3

, 1
4ε2

i
− 1 ≤ 3

Σ2
i
− 1 < 4

Σ2
i

; For Σi ≥ 2√
3

,

1
4ε2

i
− 1 ≤ 3

Σ2
i
− 1 ≤ 1

Σ2
i

8
9− 16

81
1

Σ2
i

1− 8
9

1
Σ2

i

+ 16
81

1
Σ4

i

< 1
Σ2

i

8
9

1− 8
9

1
Σ2

i

< 4
Σ2

i
.

By plugging the upper bound in Lemma 5 into Equa-
tion (36), we can derive a tractable upper bound of
P[sign(

�
k∈λ̄ ḡ

(n)
k,i ) �= sign(g(n)

i )], as P[Z ≥ Kc

2 ] ≤ 1
Σi

√
Kc

,
which completes the proof. �

APPENDIX C
PROOF OF LEMMA 3

Following the proof of Lemma 2, transforming
P[sign(

�
k∈λ̄ ḡ

(n)
k,i ) �= sign(g(n)

i )] into an equivalent
mathematical event described by well-defined random
variables with known distributions is an essential step.
However, we cannot directly model the estimation of each
device to the i-th entry of true gradient as an equal-probability
Bernoulli trial like the proof of Lemma 2, due to the fact that
the estimation is determined by the data-stochasticity and
the heterogeneous communication conditions, which leads
to a different probability distribution of each bernoulli trial
intuitively.

Recall the form of bit error probability of each device
k ∈ λ̄, i.e., pk,i = P[sign(ḡ(n)

k,i ) �= sign(g(n)
i )], which

intuitively depends on the level of the noise introduced by
the data-stochasticity and communication noise. To formalize
the intuition, we further decouple the decoding bit error prob-
ability into a joint expression, as pk,i = P

sam
i (1 − P

trans
k ) +

Ptrans
k (1 − Psam

i ). Psam
i = P

�
sign(g̃(n)

k,i ) �= sign(g(n)
i )
�
≤ 1

2

denotes the probability of the sign of a component of the
stochastic gradient g̃

(n)
k,i being incorrect compared with the

true gradient g
(n)
i , which is equal across devices under the

independent and identically case as suggested in [7], and
can be effectively expressed by Equation (38). P

trans
k =

P

�
sign(ḡ(n)

k,i ) �= sign(g̃(n)
k,i )
�

reveals the effect of the commu-
nication noise on the correct decoding of quantization gradient
during data transmission, i.e., the BER, which can be written
as Equation (7). Note that we rewrite Ptrans

k,i as Ptrans
k since

the channel state remains constant when sending each bit.
By rearranging the expression, we have pk,i =

Psam
i (1 − 2Ptrans

k ) + Ptrans
k . Define

Xk =

*
1, with probability pk,i ∀ Θ, p,A,

0, with probability qk,i ∀ Θ, p,A,
(40)

with qk,i = 1− pk,i, and let Z =
�

k∈λ̄ Xk, which represents
the number of edge devices with incorrect sign bit at the
i-th entry of the true gradient. Thence, Z is the sum of
Kc independent Bernoulli random variables, with respective
success probabilities pk,i, known commonly as the Poisson
binomial distribution (PBD), which is well approximated by
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the binomial distribution, with a known bound [47] on the
total variation distance from the PBD.

To find P[sign(
�

k∈λ̄ ḡ
(n)
k,i ) �= sign(g(n)

i )], the probability
upper bound for P[Z ≥ Kc

2 ] should be derived. Note that
P[Z ≥ Kc

2 ] = 1−P[Z ≤ Kc

2 ], which means deriving the upper
bound of P[Z ≥ Kc

2 ] naturally equivalents to calculating the
lower bound of P[Z ≤ Kc

2 ]. This encourages us to cleverly
introduce Lemma 6 as follows to deal with the tricky PDB of
event Z .

Lemma 6: Let X → PB(p1, . . . , pn), X̄ → Bin(n, p̄),
with PB and Bin denoting the PBD and the binomial distrib-
ution respectively, then we have P[X ≤ k] ≥ P[X̄ ≤ k] with
np̄ ≤ k ≤ n.

Proof: The original proof was brute-force by using the idea
of majorization and Schur convexity, as detailed in [47]. The
complete proof is skipped due to space limitation.

Next, let X = Z , k = Kc

2 , and p̄ = 1
Kc

�
k∈λ̄ pk,i. We have

P

�
Z ≥ Kc

2

�
= 1 − P

�
Z ≤ Kc

2

�

≤ 1 − P

�
Z̄ ≤ Kc

2

�
= P

�
Z̄ ≥ Kc

2

�
,

(41)

which inspires us to derive the upper bound of P[Z̄ ≥ Kc

2 ].
Define

εi =
1
2
− 1

Kc

�
k∈λ̄

pk,i/ 01 2
pi=p̄

= 1 − 1
Kc

�
k∈λ̄

pk,i/ 01 2
qi

−1
2
. (42)

Plugging pk,i into εi, we get

εi =
1
2
− 1

Kc

�
k∈λ̄

�
P

sam
i

�
1 − 2P

trans
k

�
+ P

trans
k

�
=

1
Kc

�
k∈λ̄

�
1
2
�
1 − 2P

trans
k

�− P
sam
i

�
1 − 2P

trans
k

��
=
�

1
2
− P

sam
i

�
1

Kc

�
k∈λ̄

Ξk, (43)

with Ξk = 1 − 2Ptrans
k in the last equation, and thus ε2

i =
(1
2 − Psam

i )2( 1
Kc

�
k∈λ̄ Ξk)2. Now we begin to give a lower

bound of (1
2 − Psam

i )2. From Lemma 5, we have 1
4( 1

2−Psam
i )2

−
1 ≤ 4

Σ2
i

, thus (1
2 − Psam

i )2 ≥ Σ2
i

16 + 4Σ2
i

. Combining ε2
i ,

Equation (36) and Equation (41), we have

P[Z ≥ Kc

2
]

≤
√

Kc

Σi

�
k∈λ̄ Ξk

+
√

Kc

2
�

k∈λ̄ Ξk

�
1 −
�

1
Kc

�
k∈λ̄

Ξk

�2

≤
√

Kc

Σi

�
k∈λ̄ Ξk

+

√
Kc

2
�

k∈λ̄ Ξk

�
1−
�

1√
K
√

Kc

�
k∈λ̄

Ξk

�2

(44)

which completes the proof. �

APPENDIX D
PROOF OF THEOREM 2

By plugging Lemma 3 into Equation (10), we have

E[F (n+1) − F (n)|w(n)] ≤ −η�g(n)�1 +
η2

2
�L�1

+ 2η
�q

i=1

���g(n)
i

���P[sign(
�

k∈λ̄
ḡ
(n)
k,i ) �= sign(g(n)

i )]

= η

⎛
⎝ √

Kc�
k∈λ̄ Ξk

�
1−
�

1√
K
√

Kc

�
k∈λ̄

Ξk

�2

−1

⎞
⎠���g(n)

���
1

+
η2

2
�L�1 + η

2
√

Kc�σ�1√
nb

�
k∈λ̄ Ξk

, (45)

with Σi denoting the gradient-signal-to-data-noise ratio. Sub-
stituting the learning rate η = 1√

�L�1nb

and batch schedule

nb = 1
γ N , we get

E[F (n+1) − F (n)|w(n)]

≤
√

γ
��g(n)

��
1��L�1N

⎛
⎜⎜⎜⎝

√
Kc�

k∈λ̄ Ξk

�
1−
�

1√
K
√

Kc

�
k∈λ̄

Ξk

�2

−1/ 01 2
Ga

⎞
⎟⎟⎟⎠

+
γ

2N
+2

γ
√

Kc�σ�1

N
��L�1

�
k∈λ̄ Ξk

. (46)

Further, by extending the expectation over the randomness
in the optimization trajectory, and telescoping sum over the
iterations, we have

F (0) − F ∗ ≥ F (0)−E[F (n)]=E

�
N−1�
n=0

F (n)−F (n+1)

�

≥ E

⎡
⎣N−1�

n=0

⎡
⎣ −√

γGa��L�1N

���g(n)
���

1
− γ

2N
−

2γ
√

Kc�
k∈λ̄ Ξk

N
��L�1

�σ�1

⎤
⎦
⎤
⎦

=

�
γN

�L�1

⎛
⎝1−

√
Kc�

k∈λ̄ Ξk

�
1−
�

1√
K
√

Kc

�
k∈λ̄

Ξk

�2
⎞
⎠ (47)

∗E
�

1
N

N−1�
n=0

���g(n)
���

1

�
− 2γ��L�1

√
Kc�

k∈λ̄ Ξk
�σ�1 −

γ

2
.

(48)

Now rearranging the terms in Equation (48), yields the bound
given by

E

�
1
N

N−1�
n=0

�g(n)�1

�

≤ aRIS√
N

��
�L�1

γ

�
F (0) − F ∗ +

γ

2

�
(49)

+ 2bRIS
√

γ�σ�1), (50)

with the scaling factor aRIS = 1

1−
√

Kc

�
1−
�

1√
K

√
Kc

�
k∈λ̄ Ξk

�2

�
k∈λ̄ Ξk

and bRIS =
√

Kc�
k∈λ̄ Ξk

, which completes the proof. �
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