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Abstract— Reconfigurable intelligent surfaces (RISs) can
potentially combat jamming. It is non-trivial to perform holis-
tic selections of users, data streams, and modulation-coding
modes for all subchannels, and RIS configuration in a downlink
multiuser OFDMA system under jamming attacks, because of a
mixed-integer program nature and difficulties in acquiring the
channel state information (CSI) of the channels to and from
the RIS and from an uncooperative jammer. We propose a
new deep reinforcement learning (DRL)-based approach that
learns through changes in the data rates of the users to reject
jamming and maximize the sum rate. The key idea is to decouple
the continuous RIS configuration from the discrete selections of
users, data streams, subchannels, and modulation-coding modes.
Another critical aspect is that we show the optimal selections
almost surely follow a winner-takes-all strategy. Accordingly,
the new DRL framework learns the RIS configuration with
a twin-delayed deep deterministic policy gradient and takes
the winner-takes-all strategy to evaluate the reward, thereby
reducing the action space and accelerating learning. Simulations
show the framework converges fast and fulfills the benefit of the
RIS. With no need for the CSI of the channels to and from the
RIS and from the jammer, the framework offers practical value.

Index Terms— Reconfigurable intelligent surface (RIS),
jamming, channel allocation, discrete modulation-coding mode,
twin-delayed DDPG (TD3).

I. INTRODUCTION

REPROGRAMMABLE metasurfaces, also known as
reconfigurable intelligent surfaces (RISs), are one of the
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emerging technologies for wireless systems that have been
proposed to combat interference [1], [2], [3]. An RIS is
typically composed of densely placed, low-cost, passive meta-
atoms, and can reconfigure the radio propagation environments
between a transmitter-receiver pair, by fine-tuning the phase
shifts of the passive meta-atoms to produce favorable scatter-
ings and reflections [2], [3], [4], [5]. It is anticipated that the
RISs will empower smart radio environments [2] and facilitate
wireless communications [3].

The motivation of this paper is to design a practical
approach to user scheduling, subchannel assignment, power
allocation, and RIS configuration for an emerging RIS-
assisted, downlink, multiuser orthogonal frequency-division
multiple-access (OFDMA) system, under prominent practical
constraints arising from the difficulty in estimating the chan-
nels to and from the RIS [6], [7]. The application scenario of
the approach lies in future RIS-assisted, multiuser OFDMA
systems (e.g., upcoming 6G systems). In addition to the user
selection, channel allocation, and modulation-coding mode
selection (as done in existing multiuser OFDMA systems, e.g.,
3GPP LTE/LTE-A), a BS is responsible for the configuration
of the RIS in the future RIS-assisted, multiuser OFDMA
systems. Considering a generic scenario, we assume that each
user can have multiple data streams with different quality
requirements (e.g., the base and enhancement layers of video
traffic [8]). We also assume that there can be an intentional
jamming device (or an unintentional interference source) in
the system. In this case, it is practically important that the
design does not require the channel state information (CSI) of
the channels from the uncooperative jammer.

Fig. 1 illustrates the considered scenario, where an RIS is
deployed to help the users reject the jamming signals and
enhance the desired signals. The selection of user, data stream
(with a specific quality requirement), and modulation-coding
mode per subchannel, the allocation of the base station (BS)’s
transmit power, and the configuration of the RIS are expected
to be optimized without the CSI knowledge of the channels to
and from the RIS and from the jammer, as opposed to many
existing studies [9], [10], [11]. This problem is challenging.
Apart from its requirement of needing no CSI of the channels
to and from the RIS and from the uncooperative jammer, the
problem is a mixed integer program (with the continuous RIS
configuration and discrete selection of users, data streams,
and modulation-coding modes for the subchannels), which
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Fig. 1. An RIS-assisted, downlink multiuser OFDMA system under a
jamming attack.

is typically NP-hard and intractable. To the best of our
knowledge, the problem is new and has never been studied
in the existing literature.

A. Related Work

Many studies on RIS-assisted, secure wireless systems have
assumed that the BS has perfect CSI-at-the-Transmitter (CSIT)
of individual channels, including those involving the RISs
and jammers or eavesdroppers [9], [10], [11]. Typical solvers,
such as alternating optimization (AO), semidefinite relaxation
(SDR), fixed-point iteration method, and block-coordinate
descent (BCD), have been applied to obtain approximate
solutions [9], [10], [11], [12]. AO was used to devise the
beamformer of the BS and the phase shifts of the RIS,
to optimize the secrecy rate of an RIS-assisted, secure MISO
system [9]. SDR was used to optimally configure the RIS and
allocate the transmit power of the BS to enhance the secrecy
rate in the existence of an eavesdropper [10]. In [11], both
AO and SDR were adopted to improve the secrecy rate by
optimally assigning the transmit beamformer and configuring
the RIS. In [12], BCD was used to optimize the beamformer
and artificial noise (AN) covariance matrix of the BS and the
phase shifts of the RIS, thereby maximizing the sum rate of
AN-aided multiple-input multiple-output (MIMO) systems.

Considering imperfect CSI, the authors of [13], [14], [15],
and [16] provided robust designs of the RIS and the BS’s
beamformers in the presence of jammers or eavesdroppers.
In [13], imperfect CSI was exploited to optimize the transmit
beamformer and AN covariance matrix of the BS, and the
phase shifts of the RIS, subject to the maximum allowed
information leakage. In [14], active and passive secure beam-
forming techniques were developed under a deterministic CSI
error model. In [15], a moment-based random error model was
used to model CSI errors, followed by optimizing the secure
beamformer of the BS and the RIS configuration. The authors
of [16] maximized the sum rate by designing the BS’s transmit

beamformer and configuring the RIS with no knowledge of the
jammer’s transmit beamformer, when there are a jammer and
an eavesdropper. The bounded CSI error model of a third-party
node was assumed over each link. The error bounds were
known to the BS. These methods [13], [14], [15], [16] needed
statistical CSI.

Deep reinforcement learning (DRL) has been increasingly
applied to wireless communication systems, e.g., spectrum
sensing [17], mobile edge computing [18], and resource
allocation [19]. Only a few works have adopted DRL for
RIS-assisted secure communications, i.e., [1] and [20]. The
phase shifts of the RIS were discretized to produce a discrete
action space in the few studies [1], [20]. Unfortunately, none
of these existing studies can apply to the problem at hand, due
to the complex and mixed integer programming nature of the
problem (with the continuous RIS configuration and discrete
selection of user, data stream, subchannel, and modulation-
coding mode). In [18], a DRL-based mobile offloading scheme
was proposed for edge computing against jamming, where an
actor network chose continuous offloading policies. A critic
network updated the actor network weights to improve the
computational performance without knowing the task gener-
ation, edge computing, and jamming models. Although the
continuous action spaces were considered, the problem studied
in [18] did not consider an RIS and is substantially different
from the problem addressed in this paper.

As found in [21], adaptive modulations of grouped sub-
carriers can improve orthogonal frequency-division multi-
plexing (OFDM) performance in millimeter wave (mmWave)
frequencies. In [22], waveform and modulation-coding were
designed to lower the peak-to-average-power ratio of terahertz
transmissions. In [23], modulation-coding was adapted to
the received power of terahertz signals. In [24], an adaptive
modulation-coding mechanism was developed for a tunable
reflector-assisted mmWave system. The outage probability and
throughput of the mechanism were analyzed using stochastic
geometry. However, these studies [21], [22], [23], [24] were
restricted to a single-user setting, and cannot apply to the new
multiuser scenario considered in this paper.

B. Contribution and Organization

This paper presents a new approach to jointly optimizing the
selection of user, data stream (with a specific quality require-
ment), and modulation-coding mode for each subchannel, the
power allocation, and RIS configuration in an RIS-assisted
downlink multiuser OFDMA system under a jamming attack.
A new DRL-based approach is developed to learn through
the changes in the readily available received data rates of the
users to configure the RIS, reject the jamming signals, support
diverse data qualities, and maximize the sum rate.

The key contributions of this paper are listed, as follows.

• A new problem that comprehensively optimizes the user
and modulation-coding selection, channel allocation, and
RIS configuration in an RIS-assisted, downlink, multiuser
OFDMA system. Apart from directing desired signals to
the intended users, the RIS also diffuses jamming signals
in the presence of a jammer.
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• A novel framework that solves the new problem by
decoupling the continuous RIS configuration from the
discrete user, modulation-coding mode, and channel
selections. A winner-takes-all strategy is designed for the
selections. A TD3 model is designed to configure the RIS
to drive up the sum rate of the winner-takes-all strategy.

• We prove that the winner-takes-all strategy offers the
almost surely optimal user, modulation-coding mode, and
channel selections, and hence produces the almost surely
maximum rewards for the TD3-based RIS configuration.
This reduces the variables to be learned, and contributes
to the convergence and reliability of the TD3 model.

Extensive simulations confirm that the proposed TD3-based
framework significantly outperforms its non-learning alter-
natives in terms of sum rate. The gain of a meticulously
configured RIS is demonstrated, as the system with 40, 60, or
80 reflecting elements at the RIS provides 16.50%, 32.91%,
or 51.86% higher sum rates than the system without the RIS,
respectively. With no need for estimating the CSI of the
channels to and from the RIS and from the uncooperative
jammer, the proposed framework is of significant value in
practice.

The remainder of this paper is arranged as follows.
Section II sets forth the system model. Section III articulates
the new TD3-based framework for the selection of user,
data stream, and modulation-coding, channel (and power)
allocation, and RIS configuration. In Section IV, the new
framework is numerically evaluated, followed by conclusions
in Section V. Notations used in the rest of the paper are
collated in Table I.

II. SYSTEM MODEL

We study an RIS-assisted downlink multiuser OFDMA
system, where a single-antenna BS serves M single-antenna
users via K orthogonal subchannels, as illustrated in Fig. 1.
An RIS comprising a uniform rectangle array (URA) of N =
Ny × Nz reflecting elements is installed on the facade of
a building, which is controlled by the BS. Ny and Nz are
the numbers of reflecting elements in each row and column
of the RIS, respectively. The phase shifts of the reflecting
elements are individually adjustable via a smart controller.
M = {1, · · · , M}, K = {1, · · · , K}, and N = {1, · · · , N}
denote the sets of users, subchannels, and RIS’s reflecting
elements, respectively.

A malicious single-antenna jammer is considered to be
located near the users and sends jamming signals in an attempt
to block the legitimate receptions of the users.

Considering the jammer helps to test the RIS’s capability
in diffusing unwanted signals while directing useful signals
toward intended receivers. It also helps to test the capability
of the proposed algorithm in delivering delicate RIS configura-
tions balancing between diffusing/rejecting unwanted signals
and enhancing useful signals in the meantime.

The BS sends pilot signals at the beginning of every block.
The users estimate and feed back their effective channels,
as typically done in conventional systems [25]. The BS selects
the users and their data streams (with different quality require-
ments), and allocates subchannels and modulation-coding

TABLE I

NOTATION AND DEFINITION

modes to deliver the data streams to the users in the rest
of the block, based on the effective channels of the users.
The BS configures the RIS based on the achievable data rates
of the users. This consideration of the effective channels is
practically interesting, due to the difficulty and significant
overhead needed for estimating the CSI of the channels to
and from the RIS, and the CSI of the channels from the
uncooperative jammer [26].

Let xk � [x1,k, · · · , xM,k]T ∈ CM×1 denote the transmit
symbols for the M users in the k-th subchannel, and xJ �[
xJ

1 , · · · , xJ
K

]T ∈ C
K×1 denote the jamming signals on the

K subchannels. The jamming signals follow the zero-mean
circularly symmetric complex Gaussian (CSCG) distribution
with variance PJ [27]. The received signal at the m-th user
in the k-th subchannel is

ym,k =
[(

hru
m,k

)H
Φkhbr

k + hd
m,k

]√
pm,kxm,k

+
[(

hru
m,k

)H
ΦkhJr

k + hJd
m,k

]√
pJ

kxJ
k + nm,k, ∀m, k,

(1)

where hd
m,k is the channel coefficient from BS to the m-th user

in the k-th subchannel; hru
m,k =

[
hru

m,k(1), · · · , hru
m,k(N)

]T
∈

CN×1 is the channel vector from the RIS to the m-th user in
the k-th subchannel; hbr

k =
[
hbr

k (1), · · · , hbr
k (N)

]T ∈ CN×1
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is the channel matrix from the BS to the RIS in the k-th
subchannel, and hbr

k (n) is the channel coefficient from the
BS to the n-th reflecting element of the RIS (n ∈ N ).
pm,k is the transmit power of the BS allocated for the m-th
user in the k-th subchannel. nm,k ∈ CN

(
0, σ2

)
, ∀m ∈

M, k ∈ K is the zero-mean CSCG noise with variance
σ2. Φk � diag(φ1,k, · · · , φN,k) is the reflection matrix of
the RIS in the k-th subchannel with φn,k being the reflection
coefficient of the n-th reflecting element in the subchannel.
j =
√−1. φn,k = αn,kejθn,k with the amplitude αn,k > 0 and

the phase θn,k ∈ [0, 2π). In practice, αn,k and θn,k depend
on the configuration of the phase shift of the n-th reflecting
element of the RIS, denoted by θn. According to [5, eq. 3],
θn,k = B1(θn)fk+B2(θn) and αn,k = a1(θn,k)2+b1θn,k+c1,
where B1(θn) = a2 sin(b2θn + c2) + a3 sin(b3θn + c3),
B2(θn) = a4 sin(b4θn + c4) + a5 sin(b5θn + c5), and fk is
the center frequency of the k-th subchannel. The parameters
ai, bi, ci, i = 1, · · · , 5 depend on circuit implementation
and can be specified empirically. In this paper, we set the
parameters according to [5, Tab. I].

Moreover, hJd
m,k is the channel coefficient from the jam-

mer to the m-th user in the k-th subchannel. hJr
k =[

hJr
k (1), · · · , hJr

k (N)
]T ∈ CN×1 is the channel matrix from

the jammer to the RIS in the k-th subchannel, with hJr
k (n)

being the channel coefficient from the jammer to the n-
th reflecting element of the RIS for n ∈ N . pJ

k is the
transmit power of the jammer in the k-th subchannel. Being
a transmitting device, the jammer is typically unaware of the
user selection for each subchannel. The jammer is likely to
emit with its full power across the spectrum. Nevertheless, the
algorithm proposed in this paper can readily apply to the case
where the jamming power is not uniform across the spectrum,
as shown in Section IV.

The effective channel coefficients from the BS or jammer
to the m-th user in the k-th subchannel are given by

hm,k =
(
hbr

k

)H
ΦH

k hru
m,k + hd

m,k, ∀m ∈ M, k ∈ K; (2)

hJ
m,k =

(
hJr

k

)H
ΦH

k hru
m,k + hJd

m,k, ∀m ∈ M, k ∈ K. (3)

Suppose that the channels undergo block fading, i.e., the
channels are unchanged within a block and vary independently
between blocks [28].The received signal-to-interference-plus-
noise ratio (SINR) at the m-th user in the k-th subchannel
is

γm,k =
pm,k|hm,k|2

pJ
k |hJ

m,k|2 + σ2
. (4)

Let L = {0, 1, · · · , L} collect all discrete, modulation-coding
modes. L is the number of the modes. Suppose that the BS
selects the l-th modulation-coding mode, l ∈ L, and the
corresponding transmit rate is rl. No transmission occurs when
l = 0; i.e., r0 = 0. Under the l-th modulation-coding mode,
the bit-error-rate (BER) at the m-th user in the k-th subchannel
is [29]

�m,k,l = β1 exp
(
−β2γm,k

2rl − 1

)
, (5)

where β1 and β2 are constants depending on the modulation-
coding scheme. By reorganizing (5), it follows that

γm,k =
2rl − 1

β2
ln
(

β1

�m,k,l

)
. (6)

Suppose that each user requests Q data streams with
different BER requirements. The index to a data stream is
q ∈ Q = {1, · · · , Q}. Without loss of generality, we assume
that each user has two data streams, i.e., Q = 2, with q = 1 or
2 indicating a high-quality (HQ) or low-quality (LQ) data
stream, respectively. For example, we set the BER require-
ments �

(1)
0 = 10−6 for HQ data streams and �

(2)
0 = 10−2

for LQ data streams in our simulations. To meet the BER
requirement �

(q)
0 of the q-th data stream (q ∈ Q), the minimum

transmit power required for the BS to deliver the data stream to
the m-th user in the k-th subchannel and the l-th modulation-
coding mode, denoted by p

(q)
m,k,l, is given by [30]

p
(q)
m,k,l = p

(q)
m,k,l

(|hm,k|2, |hJ
m,k|2

)

=
(2rl − 1) ln

(
β1

�
(q)
0

)(
pJ

k |hJ
m,k|2 + σ2

)
β2 |hm,k|2

, (7)

which is obtained by first replacing �m,k,l with �
(q)
0 in (6) and

then substituting (4) into (6), followed by reorganizing (6).

III. PROPOSED CHANNEL ALLOCATION,
MODULATION-CODING SELECTION,

AND RIS CONFIGURATION

Let η
(q)
m,k,l = 1 indicate the selection of the k-th sub-

channel and the l-th modulation-coding mode for transmitting
the q-th data stream of the m-th user, given |hm,k|2 and
|hJ

m,k|2; and η
(q)
m,k,l = 0 indicates otherwise. Let η :={

η
(q)
m,k,l, ∀m ∈M, k ∈ K, l ∈ L, q ∈ Q

}
collect all indica-

tors. η is optimized under the constraint of the maximum
transmit power of the BS, where the minimum transmit power
required for the BS to deliver the q-th data stream of user m
in the k-th subchannel and the l-th modulation-coding mode
is given in (7). The transmit rate for delivering the q-th data
stream of the m-th user in the k-th subchannel can be written
as

R
(q)
m,k (η) =

L∑
l=0

η
(q)
m,k,l · rl. (8)

The sum rate of the system is given by

Rtot (η) =
M∑

m=1

Rm (η) =
M∑

m=1

K∑
k=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l · rl, (9)

where Rm (η) =
∑K

k=1

∑L
l=0

∑Q
q=1 η

(q)
m,k,l · rl is the data rate

received at the m-th user. The total transmit power of the BS
is

P (η) =
M∑

m=1

Pm (η) =
M∑

m=1

K∑
k=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,lp

(q)
m,k,l. (10)

where Pm (η) is the total transmit power allocated for the
m-th user.
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We jointly design the selection of channels, user and
modulation-coding modes, η, and the configuration of the RIS
phase shifts, i.e., Θ � {θ1, · · · , θn}, to maximize the sum
rate of the system while meeting the BER requirements of the
users, �

(q)
0 , ∀q ∈ Q and the power limit of the BS, denoted

by Pmax. The problem is cast as

P1 : max
{Θ,η}

Rtot (η) (11a)

s.t. P (η) ≤ Pmax, (11b)

θn ∈ [0, 2π), ∀n ∈ N , (11c)
K∑

k=1

{
M∑

m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

}
≤ K, (11d)

M∑
m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l ≤ 1, (11e)

η
(q)
m,k,l ∈ {0, 1}, (11f)

R(1)
m (η) = χR(2)

m (η) . (11g)

Constraint (11d) indicates the number of subchannels assigned
to all users is no larger than K . (11e) indicates each subchan-
nel is assigned to no more than a user to prevent inter-user
interference. Once η

(q)
m,k,l is determined, the transmit power for

the m-th user in the k-th subchannel using the l-th modulation-
coding mode, i.e., (7), meets the BER requirement of the q-th
data stream of the user. In (11g), χ is the ratio of the HQ
and LQ data streams and needs to be maintained, e.g., for
streaming videos with layered coding [8]. (11b) and (11c)
are self-explanatory. Problem P1 is a non-convex combina-
torial problem, and intractable for conventional optimization
techniques.

We propose to decouple Problem P1 between the RIS
configuration and the selections of user, data stream, and
modulation-coding mode for every subchannel. Given an
RIS configuration, the effective end-to-end channels of the
users are readily measurable. With the effective channels,
the closed-form expression for the optimal transmit power is
evaluated for any potential selection of user, data stream, and
modulation-coding mode in every subchannel; see (7). Then,
the selection only depends on the effective channels and is
optimized to almost surely maximize the instantaneous sum
rate of the system. We employ the state-of-the-art TD3 model
to learn the RIS configuration of the N constant-modulus
variables, θn, ∀n ∈ N , through the changes in the achievable
data rates of the users. The benefit of this approach is two-fold.

• On the one hand, the need for the CSI of the channels to
and from the RIS and from the uncooperative jammer
is eliminated. The users only need to estimate their
effective channels based on the pilot signals of the BS,
e.g., by using the minimum mean square estimation
(MMSE), as done in typical wireless communication sys-
tems, e.g., [31]. In contrast, existing solvers, such as SDR,
would require the CSI of all channels, including those to
and from the RIS and from the jammer; and would also
undergo inaccuracy arising from rank randomization [32].

• On the other hand, the almost surely optimal selections
of user, data stream, and modulation-coding mode for

every subchannel evaluate precisely the maximum reward
returned by a learned RIS configuration. The different
quality requirements of the data streams are captured by
the closed-form optimal allocation of the transmit power,
i.e., (7). Under the given RIS configuration, the optimality
of the selections is rigorously proved by showing that the
selections follow an almost surely unique and optimal
“winner-takes-all” strategy; see Section III-B. Not only
do the optimal selections reduce the state and action
spaces of the DRL (which is important for the conver-
gence of the DRL), but also ensure the quality of the
solution produced by our approach.

A. Twin-Delayed DDPG (TD3)-Based RIS Configuration

DRL is an effective dynamic programming tool to solve a
sequential decision-making problem by learning the optimal
solutions in a dynamic environment. We employ the DRL to
configure the RIS with the BS serving as the agent. The other
elements of the DRL model are below.

State Space S: At the t-th learning step, the system state
st ∈ S is defined as

st = {Rm, ∀m ∈M} . (12)

Action Space A: The action space collects all possible
actions, i.e., A := {at, ∀t = 1, · · · , Ts}. At the t-th learning
step, action at includes the reflecting coefficients {θ(t)

n }n∈N ,
i.e.,

at =
{
θ(t)

n ∈ [0, 2π), ∀n ∈ N
}

. (13)

Transition probability: Under action at, the transition prob-
ability from state s to state s′ is

Pat (s, s′) = Pr (st+1 = s′|st = s, at = a) . (14)

Policy: The mapping from the state space, S, to the action
space, A, is known as a policy, π : S → A, which is a
distribution π(a|s) = Pr (at = a|st = s) over state s ∈ S.

Reward: The reward function provides positive rewards at
each learning step, denoted by rt, for executing action at, and
is defined as

rt =
∑

m∈M
Rm (η) , (15)

where Rm =
∑

k∈K Rm,k is the total transmit rate for
the m-th user. With a discount coefficient γ ∈ (0, 1), the
cumulative discounted reward is Gt =

∑∞
j=1 γj−1rt+j .

Experience: The history experience is defined as et =
(st, at, rt, st+1), and memorized in an experience replay
buffer, denoted by R.

The agent perceives the current system state st, picks an
available action at, obtains a reward rt, and transits to a new
state st+1. A policy, at = π(st), projects the state st to a
feasible action. The agent selects the policy maximizing the
accumulated reward Gt. Given state st, action at, and reward
rt, an action-value function, i.e., Q-function, is exploited to
evaluate Gt, as Qπ(st, at) = Eπ[Gt|st, at]. It satisfies the
Bellman Expectation Equation:

Qπ (st, at) = Ert,st+1∼E
[
rt + γEat+1∼π [Qπ (st+1, at+1)]

]
,

(16)
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Fig. 2. An overview of the proposed TD3-based framework for jointly optimizing the user selection, channel allocation, modulation-coding, and RIS
configuration. The top of the figure optimizes the discrete user and modulation-coding selection and channel allocation using primal-dual subgradient descent
(PSD), given the RIS configuration. The bottom optimizes the RIS configuration using TD3, given the outcome of the top.

where E denotes the environment that the agent interacts with.
TD3 is one of the latest DRL models for continuous state

and action spaces. To address the Q-value overestimation issue
of the deep deterministic policy gradient (DDPG) algorithm,
TD3 introduces three improvements over DDPG, i.e., clipped
double-Q learning with two critics, target policy smoothing,
and delayed policy update [33].

• Clipped double-Q learning with two critics: TD3 has
two critics (i.e., to produce two Q-values), and admits
the smaller of the two Q-values to evaluate the target
Q-values in the Bellman error loss functions.

• Target policy smoothing: TD3 adds noises to the target
action and smooths the Q-function value of the actions
to make the policy less likely to exploit the errors in the
Q-function.

• “Delayed” policy updates: The actors are updated less
frequently than the critics. It is recommended in [33] that
the actors are updated after the critics are updated twice.

The TD3 framework comprises an actor network and a critic
network, as shown in Fig. 2. The actor network comprises
an actor and a target-actor. The critic network comprises two
critics and two target-critics. The actor with parameters θa,
denoted by μ (st; θa), approximates the policy function of the
agent and produces the actions. The two critics with parame-
ters θ1 and θ2, denoted by Q1(st, at; θ1) and Q2(st, at; θ2),
estimate two action-value functions of the actions produced by
the actor, and output the smaller as the action-value function of
the actions [34]. The target-actor with parameter θ′a, denoted
by μ′ (st; θ′a), produces the target policy. The two target-critics
with parameters θ′1 and θ′2, denoted by Q′

1(st, at; θ′1) and

Q′
2(st, at; θ′2), generate two Q-values, of which the smaller is

taken as the target Q-value. The TD3 follows the deterministic
policy gradient (DPG) theorem [34] to update the parameters,
θa, θ1, θ2, θ′a, θ′1 and θ′2, and optimize the actions. The use of
the target network (comprising a target-actor and two target-
critics) prevents unstable learning arising from using only an
actor-critic network (with a single actor and critic) [35].

The BS (i.e., the agent) takes the received data rates of
the users as the current state st, and passes it to the actor.
Following the DPG theorem [34], the actor produces the
current strategy by deterministically mapping a state to an
action. A random exploration noise is appended to the action
to poise the exploration of new actions and the exploitation of
known actions, i.e.,

at = clip
(
μ (st; θa) + ε, amin, amax

)
, (17)

where the noise ε is randomly sampled from a zero-mean
Gaussian distribution (GN) with variance σ2

e , i.e., ε ∼
N (0, σ2

e); clip(·) is a clipping function to limit the actions
within [amin, amax] with amax and amin being the upper and
lower bounds of the actions, respectively.

With the input (st, at), the two critics evaluate the
action-value functions of the selected action at, i.e.,
Q1 (st, at; θ1) and Q2 (st, at; θ2). By randomly drawing a
sampled transition (si, ai, ri, si+1) from the experience replay
buffer R, the action-value functions produced by the two
critics are approximated by Q1 (si, ai; θ1) and Q2 (si, ai; θ2).
The lesser of the two approximate action-value functions is
chosen as the Q-value of the next state, i.e., Qμ(si, ai) =
min {Q1 (si, ai; θ1) , Q2 (si, ai; θ2)}.
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Given the probability distribution of the parameter θa, i.e.,
J(θa), the actor network θa is updated towards the direction
specified by the gradient of J(θa) [34], i.e.,

∇θaJ(θa) = Es∼ρμ [∇θaQμ(st, μ(st; θa); θk)] (18a)

= Es∼ρμ [∇θaμ(st; θa)∇aQμ(st, μ(st; θa); θk)]
(18b)

≈ 1
Nbatch

Nbatch∑
i=1

[∇θaμ(si)∇aQμ(si, a;θk)|a=μ(si)

]
,

(18c)

where k = 1 or 2; ρμ is a discounted state distribution of
policy μ(st; θa) [36];∇θaμ(s) is the gradient of the actor μ(s)
with respect to (w.r.t.) the parameter θa; and ∇aQμ(st, a; θa)
is the gradient of Qμ(st, a; θa) w.r.t. action a. (18b) is derived
from the chain rule. (18c) is obtained by randomly sampling
Nbatch historical transitions from R to approximate∇θaJ(θa).

The parameter of the actor, i.e., θa, is updated by using the
gradient descent method [37]

θa ← θa + ηa∇θaJ(θa)θa

+
ηa

Nbatch

Nbatch∑
i=1

[∇θaμ(si)∇aQμ(si, a; θc)|a=μ(si)

]
, (19)

where ηa is the learning rate of the actor network.
One issue of deterministic policies is that they can overfit

and shrink the peaks used to produce Q-value estimates [34].
When updating the critics, the target Q-value produced by the
deterministic policies is susceptible to the inaccuracies caused
by the Q-function estimation errors. Target policy smoothing,
a regularization strategy for Q-function value learning [38],
is used to reduce the inaccuracies. Based on the randomly
sampled Nbatch past transitions from the experience replay
buffer R, the target action after target policy smoothing is
given by

a′
t = clip

(
μ′ (st+1; θ′a) + clip

(
ε′,−σ2

m, σ2
m

)
, amin, amax

)
,

(20)

where the noise ε′ is randomly sampled from a zero-mean GN
with variance σ2

a, i.e., ε′ ∼ N (0, σ2
a); and σ2

m is the maximum
exploration noise supported by the environment. The mean
square error (MSE)-based losses coming from the two critics
are evaluated as

Lk(θk) = Est∼ρμ,at∼μ(st;θa)

[
(Qk (st, at; θk)− yt)

2
]
, (21)

where k = 1 or 2. θ′1 and θ′2 are decayed copies of
θ1 and θ2, respectively. yt = rt + γ min{Q′

1(st+1, a
′
t; θ

′
1),

Q′
2(st+1, a

′
t; θ′2)} is the target Q-value of the two target-critics

based on the current transition (st, at, rt, st+1). The smaller
Q-value of the two target-critics serves as the target Q-value.

With Nbatch randomly sampled transitions, the loss func-
tion, Lk(θk), is approximated by

Lk(θk) ≈ 1
Nbatch

Nbatch∑
i=1

[
(Qk (si, ai)− yi)

2
]
, k = 1, 2,

(22)

where yi = ri + γ min
(
Q′

1(si+1, a
′
i; θ

′
1), Q

′
2(si+1, a

′
i; θ

′
2)
)

is
the approximate target Q-value produced by the target network
based on the Nbatch randomly sampled transitions. The smaller
approximate target Q-value of the two target-critics is taken
as the approximate target Q-value.

By differentiating Lk(θk) w.r.t. θk, we obtain the gradient
as

∇θk
Lk(θk) ≈ 1

Nbatch

Nbatch∑
i=1

[
(Qμ (si, μ(si; θa); θk)− yi)

×∇θk
Qμ(si, μ(si; θa); θk)

]
, k = 1, 2. (23)

The two critics, i.e., θ1 and θ2, are updated by utiliz-
ing the stochastic gradient descent method [37]. According
to the “delayed” policy updates, the target-actor and the two
target-critics evolving from the actor and critics are updated
every two iterations by running the Polyak Averaging [33]:

θ′a ← ρτθa + (1− ρτ )θ′a,

θ′k ← ρτθk + (1− ρτ )θ′k, k = 1, 2, (24)

where ρτ is the decaying rate of both the actor and critic
networks.

B. Optimal Channel Allocation and Rate Adaptation

Given the phase shifts of the RIS, Θ, from the TD3 network,
the effective channel gains of the BS and jammer to the m-th
user in the k-th subchannel, |hm,k|2 and |hJ

m,k|2, are readily
measurable. We can rewrite problem P1 as

P2 : max
η

Rtot (η) , s.t. (11b), (11d)− (11g). (25)

By defining λ as the Lagrange multiplier w.r.t (11b), and
ν = {νm, ∀m} as the Lagrange multipliers w.r.t (11g), the
Lagrange function of (25) is

L (η, λ, ν) = Rtot (η)− λ (P (η)− Pmax)

−
M∑

m=1

νm

(
R(1)

m (η)−χR(2)
m (η)

)
. (26)

Further, define

�
(q)
m,k,l (λ, νm) =

{
−λp

(q)
m,k,l + (1− νm) rl, if q = 1;

−λp
(q)
m,k,l + (1 + νmχ) rl, if q = 2.

(27)

Then, (26) is rewritten as

L (η, λ, ν) = λPmax

+
K∑

k=1

{
M∑

m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l�

(q)
m,k,l (λ, νm)

}
. (28)

The Lagrange dual function is

D (λ) = max
η

L (η, λ, ν) . (29)

The dual problem of (25) is given by

min
λ,ν

D (λ, ν) . (30)
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Given λ and ν, the primary variable η is obtained by solving

max
η

K∑
k=1

{
M∑

m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l�

(q)
m,k,l (λ, νm)

}
,

s.t. (11e), (11f). (31)

The optimal channel allocation and modulation-coding selec-
tion take a “winner-takes-all” strategy [8]. As per the k-th
subchannel, the m∗

k-th user and the l∗k-th modulation-coding
mode are selected to deliver the q∗-th data stream:

{m∗
k, l∗k, q∗k} = arg max

m,l,q
�

(q)
m,k,l (λ, νm) , ∀k ∈ K. (32)

A greedy strategy can be taken to optimize η:{
η
(q)∗
m,k,l (λ, νm) = 1, if {m, l, q} = {m∗

k, l∗k, q∗k} ;
η
(q)∗
m,k,l (λ, νm) = 0, otherwise.

(33)

With η∗ (λ, ν) obtained in (33), the sub-gradient descent
method is taken to update λ and ν by solving the dual
problem (30). λ and ν are updated by [39]

λ (τ + 1) = [λ(τ) − ε (P (η∗ (λ (τ) , ν(τ)))− Pmax)]
+

,

νm (τ + 1) =
[
νm(τ) − ε

(
R(1)

m (η∗ (λ (τ) , ν(τ))) (34a)

−χR(2)
m (η∗ (λ (τ) , ν(τ)))

)]+
, ∀m, (34b)

where ε is the step size, τ is the index to the iterations, and
[x]+ = max (0, x). At initialization, λ and ν are non-negative,
i.e., λ(0) ≥ 0 and νm(0) ≥ 0, ∀m, to ensure (34) converges.

It is prudent to analyze the optimality of the solution
obtained iteratively by (33) and (34), since problem (25) is
a non-convex mixed-integer program. We assert that when the
gains of the channels, |hm,k|2 and |hJ

m,k|2, ∀m ∈M, k ∈ K,
have a continuous cumulative distribution function (CDF).
η
(q)∗
m,k,l (λ∗, ν∗

m) , ∀m, k, is the almost surely optimal solution
to problem P2 (i.e., with probability 1), where λ∗ is obtained
in (34) with any initial λ(0) > 0 and νm(0) > 0. The proof
can be referred to [8]. For completeness, a sketch of the proof
is provided below.

The proof starts by confirming the almost sure uniqueness
of the “winner-takes-all” strategy η∗(λ, ν) in all three possible
cases. (a) If maxm,l,q �

(q)
m,k,l (λ, νm) = 0, all users undergo a

deep fade in the k-th subchannel. Even if user m is selected
for the subchannel, l∗k(λ, νm) = 0, the optimal decision of
the BS is to not transmit in the subchannel; see (33). (b) If
maxm,l,q �

(q)
m,k,l (λ, νm) > 0 and a single “winner” wins the

k-th subchannel, the optimal strategy in (33) is unique. (c) If
maxm,l,q �

(q)
m,k,l (λ, νm) > 0 and multiple {m, l, q} triplets

can win the k-th subchannel with one triplet selected at ran-
dom, the strategy is non-unique. This is a Lebesgue measure
zero event [40] under the continuous CDF of the random
channel gain. The non-unique “winner” has the “measure
zero” effect, i.e., the probability of the non-unique “winner”
is almost zero. Given its almost sure uniqueness, the “winner-
takes-all” strategy maximizes the Lagrangian function (29),
even if P2 is relaxed to a linear program (LP), i.e., η∗(λ, ν)
can take a continuous value within [0, 1]. Since the LP has a
zero-duality gap, η∗(λ, ν) is almost surely optimal for P2.

Algorithm 1 Proposed PSD-TD3 to Solve Problem P1

1 Initialization: Randomly initialize the actor μ and the
two critics Q1 and Q2 with parameters θa, θ1, and θ2,
the target-actor μ′ and two target-critics Q′

1 and Q′
2 with

parameters θ′a ← θa, θ′1 ← θ1, and θ′2 ← θ2, the
experience replay buffer R, and the channel allocation
and modulation-coding selection η0.

2 Measure the received data rates of all users and η0 as the
initial state s0.

3 for t = 1, · · · , Ts do

4 Pick action at = clip
(
μ (st; θa) + ε, amin, amax

)
, and

update Θ.
5 Obtain the dual problem of P2 based on the updated

Θ: minλ,ν maxη L (η, λ, ν).
6 Initialize I = 0, the maximum iteration number Imax,

λ(0) ≥ 0, νm(0) ≥ 0, ∀m, and η0.
7 while L (η, λ, ν) is yet to converge, and I < Imax do
8 Obtain η∗ by maximizing L (η, λ, ν) given λ

using a greedy strategy.
9 Initialize J = 0 and the maximum iteration number

Jmax:
10 while P (η∗) is yet to converge, and J < Jmax do
11 Update λ and νm, ∀m according to (34).
12 J ← J + 1.

13 I ← I + 1.

14 Output the optimal channel allocation and
modulation-coding selection ηt = η∗.

15 Receive the reward rt, perceive a new state st+1, and
reserve transition (st, at, rt, st+1) in R.

16 Randomly sample Nbatch historical transitions
(si, ai, ri, si+1) from R.

17 Update the target action after target policy smoothing
based on the sampled transitions: a′

t =
clip
(
μ′ (st+1; θ′a) + clip

(
ε′,−σ2

m, σ2
m

)
, amin, amax

)
.

18 Update the target Q-value:

yi = ri + γ min
(
Q′

1(si+1, a
′
i; θ

′
1), Q

′
2(si+1, a

′
i; θ

′
2)
)

.

19 Calculate the loss function based on (22), and update
the two critics by (23).

20 if mod (t, 2) = 0 then
21 Update the actor based on (19), and the

target-actor and the two target-critics by (24).

C. Algorithm Description

Algorithm 1 summarizes the proposed algorithm, referred
to as PSD-TD3. The agent collects the effective channels of
the users at the beginning of every learning step (i.e., the t-
th step), evaluates their achievable data rates, and takes the
achievable data rates as the state of the algorithm (i.e., state
st) to train the actor. A continuous action at is produced by
the actor to update the reflection matrix of the RIS using
TD3; see Section III-A. Given the reflection matrix, the
algorithm optimizes the selections of user, data stream, and
modulation-coding mode for each subchannel, i.e., ηt, using
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PSD; see Section III-B. Based on the selection, the agent
evaluates the reward rt, transits to the state st+1, and records
the transition (st, at, rt, st+1) in the experience replay buffer
R. The parameters of the six DNNs are updated with randomly
sampled past transitions in the experience replay buffer R until
the cumulative reward converges.

The proposed algorithm can be extended to a multi-antenna
setting where both the BS and users can have multiple
antennas. Specifically, space-time block coding (STBC) and
maximal ratio combining (MRC) can be carried out at the
BS and users, respectively. Given an RIS configuration, each
user can individually measure its effective channel matrix
from the BS, denoted by Hm,k =

(
Hbr

k

)H
ΦH

k Hru
m,k +

Hd
m,k ∈ CNt×Nr , ∀m ∈ M, ∀k ∈ K, and evaluate and

report its effective channel gain of each subchannel, i.e.,

γmrc
m,k =

pm,k(‖Hm,k‖2/NtNrRc)
pJ

k (‖hJ
m,k‖2/NrRc)+σ2 [1], [20], [41], where Rc is

the information code rate of the STBC, and Nt and Nr are
the numbers of antennas at the BS and users, respectively.
Accordingly, the BS can optimize the selections of user, data
stream (with a quality requirement), and modulation-coding
scheme for each subchannel, and learn the RIS configuration
in the same way as it does under the single-antenna setting.

D. Complexity and Convergence Analyses

The proposed PSD-TD3 algorithm consists of the PSD
and the TD3 model. The PSD has the complexity of
O(KMLQ log(1/ε)), where O(log(1/ε)) accounts for the
number of iterations to achieve the accuracy of ε. In each of
the iterations, the greedy strategy, i.e., (33), enumerates all M
users with Q data streams per user, and L modulation-coding
modes for subchannel k to decide the 3-tuple {m∗

k, l∗k, q∗k}
maximizing the net reward �

(q)
m,k,l (λ, νm), incurring the com-

plexity of O(MLQ). The other operations, i.e., updating the
dual variables using (34), incur the complexity of O(M + 1)
and are comparatively negligible. Considering K subchannels,
the overall complexity of the PSD is O(KMLQ log(1/ε)).
As of the TD3 model, we separately evaluate the com-
plexities of the actor and critic networks. Suppose that the
actor network has La layers with Jm neurons in the m-
th layer (m ≤ La). The complexity of the m-th layer is
O(Jm−1Jm + JmJm+1) [42]. The complexity of the actor

network is O
(∑La−1

m=2 (Jm−1Jm + JmJm+1)
)

. Suppose that
the critic network has Lc layers with Gn neurons in the
n-th layer (n ≤ Lc). The complexity of the n-th layer is
O(Gn−1Gn + GnGn+1) [42]. The complexity of the critic

network is O
(∑Lc−1

n=2 (Gn−1Gn + GnGn+1)
)

. As a result,
the overall computational complexity of the TD3 model
is O(∑La−1

m=2 (Jm−1Jm + JmJm+1) +
∑Lc−1

n=2 (Gn−1Gn +
GnGn+1)

)
[42].

In terms of convergence, the proposed PSD-TD3 algorithm
satisfies the following conditions: (i) the network parameters θ
and θ′ (of which the subscripts are suppressed for brevity) are
upper bounded since they are sequentially compact following
the Arzela-Ascoli theorem [43]; (ii) the state and action spaces
are compact as the sampled states and actions are bounded by
the maximum transmit power of the BS and the phase shifts

of the RIS; (iii) the reward function, i.e., (15), is continuous;
and (iv) the training networks are feedforward FCNNs with
twice continuously differentiable activation functions, e.g.,
Rectified Linear Units (ReLUs) and sigmoid. As a result, the
algorithm can asymptotically converge if we adopt a sequence
of square summable learning rates, i.e.,

∑
t ηa(t) = ∞ and∑

t ηa(t)2 <∞, according to [44, Lemma 2]. t indicates the
time steps. ηa(t) is a time-varying learning rate of the actor
network.

IV. SIMULATION RESULTS

In the considered system, the BS is placed at (D0, 0, Hb),
the jammer is placed at (xJ , yJ , 0), and the first element of the
RIS has the coordinates (0, δ, δ + Hr), as depicted in Fig. 1.
We set D0 = 2 m, Hb = 10 m, Hr = 10 m, xJ = 50 m,
and yJ = 150 m. The RIS is a URA with element spacing
of δ. We assume d0 = δ = λ

2 . We use (ι, κ) to index the
RIS elements. ι ∈ {1, · · · , Ny} and κ ∈ {1, · · · , Nz}. The
coordinates of the (ι, κ)-th reflecting element are (0, ι×δ, κ×
δ + Hr). The users are uniformly scattered within a square
area centered at (100, 100, 0) m with a side length of 100 m.
The sides of the area are parallel to the x- and y-axes. The
location of the m-th user is (xm, ym, 0), ∀m ∈M. By default,
M = 4.

We consider Rayleigh fading for the BS-user (BS-UE) and
the jammer-UE links, and Rician fading for the BS-RIS,
jammer-UE, and RIS-UE links. The channel gains of the BS-
UE (or jammer-UE), BS-RIS (or jammer-RIS), and RIS-UE
links are given by

hd
m,k =

√
εo (dd

m)−αd h̃d, ∀m, k, (35)

hbr
ι,κ =

√
εo

(
dbr

ι,κ

)−αbr

(√
K1

1+K1
hbr

los+
√

1
1+K1

hbr
nlos

)
,

∀ι, κ, (36)

hru
ι,κ,m =

√
εo

(
dru

ι,κ,m

)−αru

(√
K2

1+K2
hru

los+
√

1
1+K2

hru
nlos

)
,

∀ι, κ, m, (37)

hJd
m,k =

√
εo (dJd

m )−αJd h̃Jd, ∀m, k, (38)

hJr
ι,κ =

√
εo

(
dJr

ι,κ

)−αJr

(√
K3

1+K3
hJr

los+
√

1
1+K3

hJr
nlos

)
,

∀ι, κ, (39)

where εo is the path loss at the reference distance d0 = 1 m
with αd, αbr, αru, αJd, and αJr being the path loss exponents
of the BS-RIS, BS-UE, RIS-UE, jammer-UE, and jammer-RIS

links, respectively; dbr
ι,κ =

√
(Hr + κδ −Hb)

2 + ι2δ2 + D2
0

is the distance from the BS to the (ι, κ)-th reflecting ele-

ment of the RIS, and dd
m =

√
(D0 − xm)2 + y2

m + H2
b is

the distance from the BS to the m-th user, and dru
ι,κ,m =√

x2
m + (Hr + κδ)2 + (ym − ιδ)2 is the distance from the

(ι, κ)-th reflecting element of the RIS to the m-th user,

dJr
ι,κ =

√
(Hr + κδ)2 + (ιδ − yJ)2 + x2

J is the distance from
the jammer to the (ι, κ)-th reflecting element of the RIS,
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TABLE II

THE PARAMETERS OF THE CONSIDERED SYSTEM

dJd
m =

√
(xJ − xm)2 + (yJ − ym)2 is the distance from the

jammer to the m-th user.
In (36), (37), and (39), K1, K2 and K3 are the Rician

factors of the BS-RIS, RIS-UE, and jammer-RIS links. hbr
los =

e−j 2πδ
λ φbr

ι,κ , hru
los = e−j 2πδ

λ φru
ι,κ,m , and hJr

los = e−j 2πδ
λ φJr

ι,κ

are the deterministic Line-of-Sight (LoS) components of the
BS-RIS, RIS-UE, and jammer-RIS links, respectively, where
φbr

ι,κ = arccos
(

ιδ
dbr

ι,κ

)
is the angle-of-arrival (AoA) of the

signal from the BS to the (ι, κ)-th reflecting element of the

RIS, φru = arccos
(

ym−ιδ
dru

ι,κ,m

)
is the angle-of-departure (AoD)

of the signal from the (ι, κ)-th reflecting element of the RIS to

the m-th user, and φJr
ι,κ = arccos

(
yJ−ιδ
dJr

ι,κ

)
is the AoA of the

signal from the jammer to the (ι, κ)-th reflecting element of
the RIS. h̃d, hbr

nlos, hru
nlos, h̃Jd, and hJr

nlos are random scattering
components modeled by zero-mean and unit-variance CSCG
variables. The other parameters of the considered system are
provided in Table II.

The TD3-based network is implemented by a two-layer
feedforward neural network with 128 and 64 hidden nodes
in the two layers. Rectified Linear Units (ReLUs) are used
as the activation functions between the layers of the actor
and critic networks. The output layers of the actor use the
sigmoid(·) to bound the output actions within [0, 2π) for
the RIS configuration. The state and action are taken as the
input to the first layer of the critic networks. The learning
rates of both the actor and critic networks are 10−3. The
exploration noise used to train the TD3 actor, and the policy
noise used to smooth the target-actor are both generated from
the zero-mean GN with a variance 0.2. The maximum value of
the exploration noise is 0.5. The update frequency of the actor
networks is 2. The TD3-based network is trained on a server
with an Nvidia Tesla P100 SXM2 16GB GPU. The network
hyperparameters are summarized in Table III.

As discussed earlier, no existing algorithm is directly com-
parable to the proposed PSD-TD3 algorithm.

With due diligence, we come up with four benchmarks for
the PSD-TD3:

• PSD-DDPG: This is a DDPG-based alternative to the
proposed PSD-TD3 by replacing the TD3 model with
a DDPG model for the RIS configuration. The user, data
stream, and modulation-coding mode selections for each
subchannel are described in Section III-B.

TABLE III

THE HYPERPARAMETERS OF THE TD3-BASED ALGORITHM

• DQN-TD3: The selections of user, data stream, and
modulation-coding mode for each subchannel are per-
formed using a DQN. The RIS configuration is done
using the TD3, as described in Section III-A. This is
a straightforward solution to the new problem consid-
ered in this paper, i.e., Problem (11), where the DQN
and TD3 optimize the discrete and continuous variables,
respectively.

• Random RIS: This is the case where the RIS is randomly
configured (to eliminate the need for the CSI to and from
the RIS, as the rest of the considered algorithms do). The
user, data stream, and modulation-coding mode selec-
tions for each subchannel are optimized, as described in
Section III-B. This algorithm helps assess the importance
of a meticulously configured RIS.

• No RIS: This is the case where there is no RIS and hence
no RIS configuration is needed. The user, data stream,
and modulation-coding mode selections are optimized
for each subchannel, as described in Section III-B. This
algorithm helps assess the benefit of the RIS.

We train the proposed algorithm only under the maximum
transmit power of the BS Pmax = 30 dBm, and test the result-
ing model under other Pmax values to show the generalizability
of the algorithm. Likewise, we train the algorithm under the
transmit power of the jammer PJ = 10 dBm (unless otherwise
specified), and test it under other PJ values.

In the top three subfigures of Fig. 3, we plot both the
per-episode reward and the average reward of the pro-
posed PSD-TD3 under different N values. We also plot the
per-episode reward and the average reward of the alternative
PSD-DDPG algorithm. The average reward over the i-th
training episode is Ḡi = 1

i

∑i
j=1 Gj

Ts
, i ∈ [1, Tep], where Gj

Ts

is the accumulative reward for the j-th training episode. The
three subfigures show that the rewards of the two algorithms
generally improve with the learning steps, and grow with N .
Moreover, the DDPG-based alternative approach demonstrates
its viability, despite DDPG being known to be susceptible to
overfitting (compared to TD3). The conclusion drawn is that
the small action space of the new framework, resulting from
the decoupling of the discrete and continuous actions, allows
even the DDPG model to sufficiently exploit the action space
and converge fast.

The bottom two subfigures of Fig. 3 show that the rewards
of the DQN-TD3 algorithm do not converge to a feasible
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Fig. 3. The per-episode and average rewards of the proposed PSD-TD3
algorithm and its DDPG-based alternative under N = 40, 60, and 80 (the top
three subfigures), and the rewards and the BS transmit power of the DQN-TD3
algorithm under N = 40 (the bottom two subfigures).

Fig. 4. Sum rate vs. the number of RIS’s reflecting elements.

solution even after 3,500 training episodes, because the
required transmit power of the BS violates its power limit.
In contrast, the PSD-DDPG and PSD-TD3 converge within
only a few episodes. The convergent solutions of the
PSD-DDPG and PSD-TD3 are inherently feasible, since the
optimal allocation of the transmit power is pre-evaluated
in the closed form before the user, data stream, and

Fig. 5. Sum rate vs. Pmax, where the jamming power is 10 dBm.

Fig. 6. Sum rate vs. the transmit power of Jammer, PJ , where the proposed
PSD-TD3 is plotted under different sizes of the RIS and compared with the
case without the RIS.

Fig. 7. Sum rate vs. the shaping parameter αj (or βj). The average jamming
power PJ ranges from 10 dBm to 30 dBm. The jamming powers are equal
across the subchannels when αj = βj = 5.0.

modulation-coding mode are selected for each subchannel
subject to the power limit of the BS.

Next, we examine the proposed PSD-TD3 algorithm and
its alternatives under different parameters of the considered
system. Each testing episode has 200 steps. During a testing
process, no exploration noise is added. Fig. 4 plots the sum
rate of the M users against the number of reflecting elements
at the RIS, N , under K = 16 and 32 subchannels. We also
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Fig. 8. Examples of the unequal allocation of the jamming power PJ in the
subchannels under different values of αj (and βj).

Fig. 9. Sum rate vs. M , where each value is the average of 200 independent
tests.

plot the case with the RIS randomly configured and the case
without the RIS for comparison. We see that both PSD-TD3
and PSD-DDPG are effective and can benefit from the increase
of N . The usefulness of the RIS and the importance of
meticulous RIS configuration are demonstrated by comparing
the proposed PSD-TD3 to the cases without the RIS and with
the RIS randomly configured. Particularly, the case with the
RIS randomly configured can only marginally outperform the
case without the RIS, as will also be shown in Fig. 9.The
proposed algorithm can readily operate in the absence of the
jammer, which is a special yet simpler case of the considered
problem. As shown in Fig. 4, the algorithm achieves higher
sum rates without the jammer, compared to the case with the
jammer.

Fig. 5 plots the sum rate with the increasing maximum
transmit power of the BS, Pmax, under different N and K .
We observe that the proposed PSD-TD3 attains a higher sum
rate than the case without the RIS. The sum rate grows
with Pmax under all the considered algorithms and parameter
settings. The usefulness of the RIS is also validated, since
the sum rate grows with N . We also plot the sum rate
with the growing transmit power of the jammer, PJ , under
K = 16 in Fig. 6. We see that the sum rate declines as PJ

grows. When PJ ≥ 35 dBm, the sum rate approaches zero

Fig. 10. The bird view of the simulated system, where we assess the impact
of the network deployment by moving the BS and RIS along the x- and
y-axes in Figs. 10(a) and 10(b), respectively, and moving the jammer in the
directions of the x- and y-axes in Figs. 10(c) and 10(d), respectively.

under the proposed PSD-TD3, while it approaches zero when
PJ ≥ 25 dBm in the case without the RIS. In other words,
the RIS strengthens the anti-jamming capability significantly
by augmenting the radio propagation environment.

To assess the impact of unequal jamming powers across the
subchannels on the sum-rate of the system, we consider the
Beta distribution for the jamming powers, i.e., f(x, αj , βj) =
xαj−1(1 − x)βj−1/B(αj , βj), where B(αj , βj) is the Beta
function with the shape parameters αj = βj related to
the variance of generated data. The larger αj and βj are,
the most consistent the jamming powers are across different
subchannels. When αj = βj = 5.0, the jamming powers are
equal across all subchannels. Fig. 7 plots the sum-rate against
the shaping parameters αj (or βj) under different settings of
the average jamming power PJ . We observe that the sum-rate
declines with the increase of αj (and βj), since the difference
of the jamming powers among the subchannels decreases; see
Fig. 8. The reason is that the unbalanced jamming powers
allow the BS to avoid severely jammed subchannels and
efficiently utilize those less jammed.

Fig. 9 plots the sum rate versus the number of users M ,
where N = 40, 60, and 80. We also plot the case where the
RIS is randomly configured and the case without the RIS for
comparison. It is observed that the sum rate grows with M in
all three cases, and the proposed PSD-TD3 outperforms the
other two cases. The gain of the meticulously configured RIS
is confirmed by showing the gain of the PSD-TD3 over the
case with a randomly configured RIS.

We proceed to assess the influence of the network deploy-
ment on the sum rate of the proposed PSD-TD3, by separately
varying the positions of the BS, the RIS, and the jammer, as
shown in Fig. 10. We first move the BS along the x-axis;
see Fig. 10(a). Then, we move the RIS along the y-axis; see
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Fig. 11. Sum rate vs. the horizontal and vertical distances between the BS and
RIS, where we move the BS and RIS along the x- and y-axes, respectively;
see Figs. 10(a) and 10(b).

Fig. 12. Sum rate vs. the vertical distance from Jammer to RIS, where we
move the jammer away from the BS and RIS in the directions of the x- and
y-axes; see Figs. 10(c) and 10(d).

Fig. 10(b). We also move the jammer along the directions
parallel to the x- and y-axes; see Figs. 10(c) and 10(d). The
results of these four cases are provided in Figs. 11 and 12.

Fig. 13. Sum rate vs. the ratio of the HQ and LQ data streams, where
Pmax = 30 dBm. (a) The jamming power is 10 dBm. (b) The jamming
power is 20 dBm.

Fig. 11(a) reveals that the sum rate of the proposed
PSD-TD3 first declines quickly, then rises to its peak, and
finally drops, with the increasing horizontal distance from the
BS to the RIS. This is because fewer signals are reflected from
the RIS, and consequently, the sum rate drops rapidly as the
distance starts to increase. By further moving the BS along
the x-axis, the BS gets increasingly close to the users. The
powers that the users receive directly from the BS increase,
hence improving the sum rate. When the BS is moved away
from the users, the received powers at the users decrease and
so does the sum rate. We also see that when the BS is near the
RIS (e.g., D0 ≤ 5 m), the larger number of reflecting elements
at the RIS induces a higher sum rate. Nonetheless, the gain
of the RIS declines when the BS is moved farther from the
RIS. Fig. 11(b) shows that the sum rate declines when the RIS
is moved farther from the BS along the y-axis (and the RIS
remains far from the users). This is because the contribution
of the RIS to the sum rate is increasingly negligible when the
RIS is moved farther from the BS, and finally overshadowed
by the contribution of the direct paths from the BS to users.

Figs. 12(a) and 12(b) show that the sum rate of the proposed
PSD-TD3 first declines and then grows with the increasing
vertical distances from the jammer to the RIS and the BS,
respectively. As the jammer is moved along the directions
parallel to the x- and y-axes, it gets closer to the users. The
received SINR at the users degrades, and hence first decreases

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on December 20,2024 at 07:29:45 UTC from IEEE Xplore.  Restrictions apply. 



1644 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 3, MARCH 2023

the sum rate. By further moving the jammer away from the
users, the jamming signal strength reduces and the sum rate
increases. We also see that the RIS-assisted system has a more
powerful anti-jamming capability than the system without the
RIS. Moreover, the anti-jamming capability becomes stronger,
as the number of reflecting elements increases at the RIS.

Finally, Fig. 13 examines the impact of the ratio of the HQ
and LQ data streams, χ, on the proposed PSD-TD3 under
the jammer power PJ = 10 and 20 dBm. We notice that
the PSD-TD3 achieves greater HQ and LQ data rates, and
sum rates than the case without the RIS. With the growth of
χ, the HQ data rates first grow and then decline, while the
LQ data rates decrease under the PSD-TD3. This is because
more HQ data streams need to be delivered under a larger
value of χ. To satisfy the BER requirement (i.e., 10−6 here)
of these HQ data streams, more transmit powers and channels
are needed, resulting in smaller LQ data rates and sum rates.
On the other hand, it is increasingly difficult to satisfy the
BER requirement when χ > 2, owing to the unbalanced HQ
and LQ data streams, especially under strong jamming signals;
see Fig. 13(b).

V. CONCLUSION

This paper proposed the new PSD-TD3 algorithm to
jointly optimize the selection of user, data stream, and
modulation-coding mode for all subchannels, and the con-
figuration of the RIS in an RIS-assisted downlink multiuser
OFDMA system under a jamming attack. A TD3 model
was designed to learn the RIS configuration. The PSD was
employed to optimize the selections. Both were based on the
measurable effective channels of the users. Consequently, the
algorithm learns to maximize the sum rate of the system
through changes in the received data rates of the users,
and eliminates the need of CSIT and avoids estimating the
CSI of the channels to and from the RIS and from the
jammer. As validated by extensive simulations, the proposed
anti-jamming PSD-TD3 framework significantly outperforms
its non-learning alternatives in terms of sum rate. The new
framework with 40, 60, or 80 reflecting elements at the RIS
provides 16.50%, 32.91%, or 51.86% higher sum rates than
the system without the RIS.
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